Eric J Schelter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6292446/publications.pdf

Version: 2024-02-01

46984 82499 6,670 154 47 72 citations h-index g-index papers 163 163 163 4316 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electronic structure studies reveal 4f/5d mixing and its effect on bonding characteristics in Ce-imido and -oxo complexes. Chemical Science, 2022, 13, 1759-1773.	3.7	12
2	Light-mediated aerobic oxidation of C(sp ³)â€"H bonds by a Ce(<scp>iv</scp>) hexachloride complex. Organic Chemistry Frontiers, 2022, 9, 2612-2620.	2.3	14
3	Discovery and mechanistic investigation of photoinduced sp3 C–H activation of hydrocarbons by the simple anion hexachlorotitanate. Chem Catalysis, 2022, 2, 853-866.	2.9	19
4	Selective Reduction of Niobium(V) Species to Promote Molecular Niobium/Tantalum Separation. Inorganic Chemistry, 2022, 61, 23-27.	1.9	8
5	Tantalum, easy as Pi: understanding differences in metal–imido bonding towards improving Ta/Nb separations. Chemical Science, 2022, 13, 6796-6805.	3.7	3
6	A hydrolytically stable Ce(iv) complex of glutarimide-dioxime. Inorganic Chemistry Frontiers, 2021, 8, 934-939.	3.0	4
7	Synthetic modeling of the structure and function of the rare-earth dependent methanol dehydrogenase cofactor. Methods in Enzymology, 2021, 650, 19-55.	0.4	2
8	Cerium(iv) complexes with guanidinate ligands: intense colors and anomalous electronic structures. Chemical Science, 2021, 12, 3558-3567.	3.7	10
9	Isolation and characterization of a covalent CeIV-Aryl complex with an anomalous 13C chemical shift. Nature Communications, 2021, 12, 1713.	5.8	20
10	Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis. Accounts of Chemical Research, 2021, 54, 2637-2648.	7.6	11
11	Photocatalytic C–H activation and the subtle role of chlorine radical complexation in reactivity. Science, 2021, 372, 847-852.	6.0	144
12	Using Redox-Active Ligands to Generate Actinide Ligand Radical Species. Inorganic Chemistry, 2021, 60, 15242-15252.	1.9	19
13	Elucidation of Thorium Redox-Active Ligand Complexes: Evidence for a Thorium-Tri(radical) Species. Inorganic Chemistry, 2021, 60, 14302-14309.	1.9	14
14	Synthesis of an elusive, stable 2-azaallyl radical guided by electrochemical and reactivity studies of 2-azaallyl anions. Chemical Science, 2021, 12, 4405-4410.	3.7	19
15	Complexation and redox chemistry of neptunium, plutonium and americium with a hydroxylaminato ligand. Chemical Science, 2021, 12, 13343-13359.	3.7	13
16	A Metal-Free, Photocatalytic Method for Aerobic Alkane Iodination. Journal of the American Chemical Society, 2021, 143, 19262-19267.	6.6	17
17	Redox-Driven Chelation and Kinetic Separation of Select Rare Earths Using a Tripodal Nitroxide Proligand. Inorganic Chemistry, 2020, 59, 172-178.	1.9	15
18	Magnetic Field Directed Rareâ€Earth Separations. Angewandte Chemie - International Edition, 2020, 59, 1851-1856.	7.2	21

#	Article	lF	CITATIONS
19	Magnetic Field Directed Rareâ€Earth Separations. Angewandte Chemie, 2020, 132, 1867-1872.	1.6	7
20	Screening of molecular lanthanide corrosion inhibitors by a high-throughput method. Corrosion Science, 2020, 165, 108377.	3.0	16
21	Understanding Molecular Factors That Determine Performance in the Rare Earth (TriNOx) Separations System. ACS Sustainable Chemistry and Engineering, 2020, 8, 14786-14794.	3.2	11
22	Proton affinities of pertechnetate (TcO ₄ ^{â^²}) and perrhenate (ReO ₄ ^{â^²}). Physical Chemistry Chemical Physics, 2020, 22, 12403-12411.	1.3	2
23	Reactivity of Ce(<scp>iv</scp>) imido compounds with heteroallenes. Chemical Communications, 2020, 56, 4781-4784.	2.2	11
24	Correlating Mechanical Sensitivity with Spin Transition in the Explosive Spin Crossover Complex [Fe(Htrz) ₃] _{<i>n</i>} [ClO ₄] _{2<i>n</i>} . Journal of the American Chemical Society, 2020, 142, 4842-4851.	6.6	30
25	High-throughput screening for discovery of benchtop separations systems for selected rare earth elements. Communications Chemistry, 2020, 3, .	2.0	26
26	Mononuclear to Polynuclear U ^{IV} Structural Units: Effects of Reaction Conditions on Uâ€Furoate Phase Formation. Chemistry - A European Journal, 2020, 26, 5872-5886.	1.7	15
27	Halide anion discrimination by a tripodal hydroxylamine ligand in gas and condensed phases. Physical Chemistry Chemical Physics, 2019, 21, 19868-19878.	1.3	1
28	Rare earth elements: Mendeleev's bane, modern marvels. Science, 2019, 363, 489-493.	6.0	270
29	Phosphoryl-Ligand Adducts of Rare Earth-TriNOx Complexes: Systematic Studies and Implications for Separations Chemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 4993-5001.	3.2	21
30	Multiple Bonding in Lanthanides and Actinides: Direct Comparison of Covalency in Thorium(IV)- and Cerium(IV)-Imido Complexes. Journal of the American Chemical Society, 2019, 141, 9185-9190.	6.6	64
31	An investigation of the binding of $(i>S)$ -monothioBINOLate to rare earth metal cations. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 624-629.	0.8	4
32	A reduction series of neodymium supported by pyridine(diimine) ligands. Dalton Transactions, 2019, 48, 8021-8025.	1.6	13
33	A strategy to improve the performance of cerium(<scp>iii</scp>) photocatalysts. Chemical Communications, 2019, 55, 4067-4070.	2.2	38
34	13C NMR Shifts as an Indicator of U–C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study. Inorganic Chemistry, 2019, 58, 4152-4163.	1.9	34
35	Sustainable Inorganic Chemistry: Metal Separations for Recycling. Inorganic Chemistry, 2019, 58, 979-990.	1.9	61
36	Uranyl Functionalization Mediated by Redox-Active Ligands: Generation of O–C Bonds via Acylation. Journal of the American Chemical Society, 2019, 141, 1016-1026.	6.6	42

#	Article	IF	Citations
37	Synthesis and Characterization of Tris-chelate Complexes for Understanding $\langle i \rangle f \langle j \rangle$ -Orbital Bonding in Later Actinides. Journal of the American Chemical Society, 2019, 141, 2356-2366.	6.6	41
38	Frontispiece: Reduction of Carbonyl Groups by Uranium(III) and Formation of a Stable Amide Radical Anion. Chemistry - A European Journal, 2018, 24, .	1.7	0
39	Understanding and Controlling the Emission Brightness and Color of Molecular Cerium Luminophores. Journal of the American Chemical Society, 2018, 140, 4588-4595.	6.6	60
40	Functional Synthetic Model for the Lanthanide-Dependent Quinoid Alcohol Dehydrogenase Active Site. Journal of the American Chemical Society, 2018, 140, 1223-1226.	6.6	47
41	Coordination Chemistry of a Strongly-Donating Hydroxylamine with Early Actinides: An Investigation of Redox Properties and Electronic Structure. Inorganic Chemistry, 2018, 57, 4387-4394.	1.9	21
42	Reduction of Carbonyl Groups by Uranium(III) and Formation of a Stable Amide Radical Anion. Chemistry - A European Journal, 2018, 24, 826-837.	1.7	23
43	Cationic cerium(IV) complexes with multiple open coordination sites. Journal of Organometallic Chemistry, 2018, 857, 5-9.	0.8	10
44	Lanthanide Photocatalysis. Accounts of Chemical Research, 2018, 51, 2926-2936.	7.6	172
45	Silyl Transfer Pathway to a Ce(IV) Imido Complex. Organometallics, 2018, 37, 4332-4335.	1.1	13
46	Redox-enhanced hemilability of a tris(<i>tert</i> -butoxy)siloxy ligand at cerium. Dalton Transactions, 2018, 47, 10113-10123.	1.6	19
47	C–H Bond Addition across a Transient Uranium–Nitrido Moiety and Formation of a Parent Uranium Imido Complex. Journal of the American Chemical Society, 2018, 140, 11335-11340.	6.6	58
48	A molecular basis to rare earth separations for recycling: tuning the TriNOx ligand properties for improved performance. Chemical Communications, 2018, 54, 10276-10279.	2.2	25
49	Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands. Inorganic Chemistry, 2018, 57, 6530-6539.	1.9	14
50	Photoinduced Miyaura Borylation by a Rareâ€Earthâ€Metal Photoreductant: The Hexachlorocerate(III) Anion. Angewandte Chemie - International Edition, 2018, 57, 10999-11003.	7.2	91
51	Exploration of the Solid- and Solution-State Structures and Electrochemical Properties of Ce ^{IV} (atrane) Complexes. Inorganic Chemistry, 2018, 57, 10543-10547.	1.9	7
52	Synthesis of novel copper-rare earth BINOLate frameworks from a hydrogen bonding DBU-H rare earth BINOLate complex. Dalton Transactions, 2018, 47, 14408-14410.	1.6	8
53	Solution and Solid State Structural Chemistry of Th(IV) and U(IV) 4-Hydroxybenzoates. Inorganic Chemistry, 2018, 57, 7259-7269.	1.9	30
54	Photoinduced Miyaura Borylation by a Rareâ€Earthâ€Metal Photoreductant: The Hexachlorocerate(III) Anion. Angewandte Chemie, 2018, 130, 11165-11169.	1.6	21

#	Article	IF	Citations
55	Cerium(IV) Imido Complexes: Structural, Computational, and Reactivity Studies. Journal of the American Chemical Society, 2017, 139, 2435-2442.	6.6	68
56	Synthesis and Reduction of Uranium(V) Imido Complexes with Redoxâ€Active Substituents. Chemistry - A European Journal, 2017, 23, 5748-5757.	1.7	15
57	Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)–Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications. Inorganic Chemistry, 2017, 56, 4852-4863.	1.9	35
58	A 1,2â€Addition Pathway for C(sp 2)â^'H Activation at a Dinickel Imide. Chemistry - A European Journal, 2017, 23, 7694-7697.	1.7	14
59	Electroâ€kinetic Separation of Rare Earth Elements Using a Redoxâ€Active Ligand. Angewandte Chemie, 2017, 129, 13635-13639.	1.6	16
60	Electroâ€kinetic Separation of Rare Earth Elements Using a Redoxâ€Active Ligand. Angewandte Chemie - International Edition, 2017, 56, 13450-13454.	7.2	50
61	Structure, Electronics and Reactivity of Ce(PNP) Complexes. Chemistry - A European Journal, 2017, 23, 17923-17934.	1.7	13
62	The Vibrancy and Variety of Modern f-Element Organometallic Chemistry. Organometallics, 2017, 36, 4507-4510.	1.1	1
63	Reactions of a cerium(iii) amide with heteroallenes: insertion, silyl-migration and de-insertion. Chemical Communications, 2016, 52, 9813-9816.	2.2	20
64	Density Functional Theory as a Predictive Tool for Cerium Redox Properties in Nonaqueous Solvents. Inorganic Chemistry, 2016, 55, 12651-12659.	1.9	25
65	Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14887-14892.	3.3	59
66	Synthesis and characterization of aluminum nitroxide complexes. Polyhedron, 2016, 114, 194-199.	1.0	5
67	Cerium Photosensitizers: Structure–Function Relationships and Applications in Photocatalytic Aryl Coupling Reactions. Journal of the American Chemical Society, 2016, 138, 5984-5993.	6.6	126
68	The role of dynamic ligand exchange in the oxidation chemistry of cerium(<scp>iii</scp>). Chemical Science, 2016, 7, 4537-4547.	3.7	25
69	An Alkali Metal-Capped Cerium(IV) Imido Complex. Journal of the American Chemical Society, 2016, 138, 6928-6931.	6.6	62
70	Accessing relatively electron poor cerium(<scp>iv</scp>) hydrazido complexes by lithium cation promoted ligand reduction. Dalton Transactions, 2016, 45, 15249-15258.	1.6	8
71	The Hexachlorocerate(III) Anion: A Potent, Benchtop Stable, and Readily Available Ultraviolet A Photosensitizer for Aryl Chlorides. Journal of the American Chemical Society, 2016, 138, 16266-16273.	6.6	107
72	Not Just Lewis Acids: Preface for the Forum on New Trends and Applications for Lanthanides. Inorganic Chemistry, 2016, 55, 9951-9953.	1.9	12

#	Article	IF	Citations
73	1,2-Addition or Enolization? Variable Reactivity of a Cerium Acetylide Complex toward Carbonyl Compounds. Organometallics, 2016, 35, 2086-2091.	1.1	9
74	Cerium(III) and Uranium(IV) Complexes of the 2-Fluorophenyl Trimethylsilyl Amide Ligand: C–F → Ln/An Interactions that Modulate the Coordination Spheres of f-Block Elements. Inorganic Chemistry, 2016, 55, 5684-5692.	1.9	14
75	C–F→Ln/An interactions in synthetic f-element chemistry. Dalton Transactions, 2016, 45, 6313-6323.	1.6	26
76	Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry. Inorganic Chemistry, 2016, 55, 775-784.	1.9	24
77	An Operationally Simple Method for Separating the Rareâ€Earth Elements Neodymium and Dysprosium. Angewandte Chemie - International Edition, 2015, 54, 8222-8225.	7.2	102
78	Rearrangement in a Tripodal Nitroxide Ligand To Modulate the Reactivity of a Ti–F Bond. Inorganic Chemistry, 2015, 54, 9588-9593.	1.9	5
79	Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes. Inorganic Chemistry, 2015, 54, 11399-11404.	1.9	32
80	Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework. Chemistry - A European Journal, 2015, 21, 17850-17859.	1.7	50
81	An Operationally Simple Method for Separating the Rareâ€Earth Elements Neodymium and Dysprosium. Angewandte Chemie, 2015, 127, 8340-8343.	1.6	25
82	Investigation of Uranium Tris(imido) Complexes: Synthesis, Characterization, and Reduction Chemistry of [U(NDIPP) ₃ (thf) ₃]. Angewandte Chemie - International Edition, 2015, 54, 9386-9389.	7.2	34
83	Stabilization of M \langle sup \rangle IV \langle sup \rangle = Ti, Zr, Hf, Ce, and Th using a selenium bis(phenolate) ligand. Dalton Transactions, 2015, 44, 2693-2702.	1.6	30
84	DFT Study of the Active Site of the XoxFâ€Type Natural, Ceriumâ€Dependent Methanol Dehydrogenase Enzyme. Chemistry - A European Journal, 2015, 21, 1743-1748.	1.7	64
85	A Ligand Field Series for the 4f-Block from Experimental and DFT Computed Ce(IV/III) Electrochemical Potentials. Inorganic Chemistry, 2015, 54, 2830-2837.	1.9	39
86	Spectroscopic and Structural Elucidation of Uranium Dioxophenoxazine Complexes. Inorganic Chemistry, 2015, 54, 6520-6527.	1.9	22
87	Structural variation in cerium aryloxide complexes templated by hemilabile K+–amine interactions. New Journal of Chemistry, 2015, 39, 6076-6084.	1.4	4
88	Luminescent Ce(III) Complexes as Stoichiometric and Catalytic Photoreductants for Halogen Atom Abstraction Reactions. Journal of the American Chemical Society, 2015, 137, 9234-9237.	6.6	137
89	Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis. Journal of the American Chemical Society, 2015, 137, 7135-7144.	6.6	22
90	Why Is Uranyl Formohydroxamate Red?. Inorganic Chemistry, 2015, 54, 5280-5284.	1.9	19

#	Article	IF	CITATIONS
91	Substituted Quinoline Quinones as Surrogates for the PQQ Cofactor: An Electrochemical and Computational Study. Organic Letters, 2015, 17, 1850-1853.	2.4	9
92	Investigation of the Electronic Ground States for a Reduced Pyridine(diimine) Uranium Series: Evidence for a Ligand Tetraanion Stabilized by a Uranium Dimer. Journal of the American Chemical Society, 2015, 137, 4690-4700.	6.6	62
93	Synthesis and Characterization of Aluminum Complexes of Redox-Active Pyridyl Nitroxide Ligands. Inorganic Chemistry, 2015, 54, 10901-10908.	1.9	11
94	Bidentate nitroxide ligands stable toward oxidative redox cycling and their complexes with cerium and lanthanum. Chemical Communications, 2015, 51, 15047-15050.	2.2	18
95	Control of cerium oxidation state through metal complex secondary structures. Chemical Science, 2015, 6, 6925-6934.	3.7	33
96	Anomalous One-Electron Processes in the Chemistry of Uranium Nitrogen Multiple Bonds. Inorganic Chemistry, 2014, 53, 9129-9139.	1.9	57
97	The electrochemical behavior of cerium(III/IV) complexes: Thermodynamics, kinetics and applications in synthesis. Coordination Chemistry Reviews, 2014, 260, 21-36.	9.5	169
98	Nonâ€Covalent Immobilization of Rare Earth Heterobimetallic Frameworks and their Reactivity in an Asymmetric Michael Addition. Advanced Synthesis and Catalysis, 2014, 356, 1243-1254.	2.1	11
99	NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides. Journal of the American Chemical Society, 2014, 136, 6276-6287.	6.6	145
100	Asymmetric Allylation of Ketones and Subsequent Tandem Reactions Catalyzed by a Novel Polymerâ€Supported Titanium–BINOLate Complex. Chemistry - A European Journal, 2014, 20, 7122-7127.	1.7	24
101	Synthesis, Bonding, and Reactivity of a Cerium(IV) Fluoride Complex. Inorganic Chemistry, 2014, 53, 27-29.	1.9	39
102	Synthesis, Structural Characterization, and Carbonyl Addition Reactivity of a Terminal Cerium(III) Acetylide Complex. Organometallics, 2014, 33, 5948-5951.	1.1	8
103	Variation of electronic transitions and reduction potentials of cerium(<scp>iv</scp>) complexes. Dalton Transactions, 2014, 43, 16197-16206.	1.6	47
104	Structural and electrochemical characterization of a cerium(<scp>iv</scp>) hydroxamate complex: implications for the beneficiation of light rare earth ores. Chemical Communications, 2014, 50, 5361-5363.	2.2	30
105	A homoleptic Î-2 hydroxylaminato CeIV complex with S4 symmetry. Dalton Transactions, 2014, 43, 6300.	1.6	15
106	\hat{I}^2 2-Coordination of 18-crown-6 to Ce(iii) cations: solution dynamics and reactivity. Chemical Communications, 2014, 50, 3470.	2.2	21
107	Harnessing redox activity for the formation of uranium tris(imido) compounds. Nature Chemistry, 2014, 6, 919-926.	6.6	145
108	Synthesis and Analysis of a Family of Cerium(IV) Halide and Pseudohalide Compounds. Inorganic Chemistry, 2014, 53, 6338-6345.	1.9	33

#	Article	IF	CITATIONS
109	Air- and Water-Tolerant Rare Earth Guanidinium BINOLate Complexes as Practical Precatalysts in Multifunctional Asymmetric Catalysis. Journal of the American Chemical Society, 2014, 136, 8034-8041.	6.6	44
110	The Inverse Trans Influence in a Family of Pentavalent Uranium Complexes. Inorganic Chemistry, 2014, 53, 6944-6953.	1.9	48
111	Reductive Cleavage of Nitrite to Form Terminal Uranium Mono-Oxo Complexes. Journal of the American Chemical Society, 2013, 135, 511-518.	6.6	48
112	Fluorinated diarylamide complexes of uranium(<scp>iii</scp> , <scp>iv</scp>) incorporating ancillary fluorine-to-uranium dative interactions. Chemical Science, 2013, 4, 798-805.	3.7	39
113	Cerium under the lens. Nature Chemistry, 2013, 5, 348-348.	6.6	37
114	Single Crystal to Single Crystal Transformation and Hydrogen-Atom Transfer upon Oxidation of a Cerium Coordination Compound. Inorganic Chemistry, 2013, 52, 4142-4144.	1.9	40
115	Synthesis, Electrochemistry, and Reactivity of Cerium(III/IV) Methylene-Bis-Phenolate Complexes. Inorganic Chemistry, 2013, 52, 5970-5977.	1.9	51
116	Uranium(IV) BINOLate Heterobimetallics: Synthesis and Reactivity in an Asymmetric Diels–Alder Reaction. Organometallics, 2013, 32, 1493-1499.	1.1	12
117	Fine-Tuning the Oxidative Ability of Persistent Radicals: Electrochemical and Computational Studies of Substituted 2-Pyridylhydroxylamines. Journal of Organic Chemistry, 2013, 78, 6344-6349.	1.7	31
118	Electrophilic Ln(III) Cations Protected by C–F → Ln Interactions and Their Coordination Chemistry with Weak σ- and π-Donors. Inorganic Chemistry, 2013, 52, 8234-8243.	1.9	34
119	Tetrakis(bis(trimethylsilyl)amido)uranium(IV): Synthesis and Reactivity. Inorganic Chemistry, 2013, 52, 7326-7328.	1.9	48
120	Homoleptic Cerium(III) and Cerium(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State. Inorganic Chemistry, 2013, 52, 11600-11607.	1.9	75
121	Synthesis and Catalytic Activity of Heterobimetallic Rare Earth–Zinc Ethyl BINOLate Analogues of Shibasaki's Catalysts. Organometallics, 2013, 32, 7431-7439.	1.1	18
122	Stable Uranium(VI) Methyl and Acetylide Complexes and the Elucidation of an Inverse Trans Influence Ligand Series. Journal of the American Chemical Society, 2013, 135, 13185-13192.	6.6	63
123	Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework. Journal of the American Chemical Society, 2013, 135, 19016-19024.	6.6	68
124	Dimeric Rareâ€Earth BINOLate Complexes: Activation of 1,4â€Benzoquinone through Lewis Acid Promoted Potential Shifts. Chemistry - A European Journal, 2013, 19, 5996-6004.	1.7	36
125	Lanthanide(iii) 2-naphthoxide complexes stabilized by interligand non-covalent interactions. Dalton Transactions, 2012, 41, 7870.	1.6	11
126	Uranium Pyrrolylamine Complexes Featuring a Trigonal Binding Pocket and Interligand Noncovalent Interactions. Inorganic Chemistry, 2012, 51, 37-39.	1.9	22

#	Article	IF	Citations
127	The Impact of Ligand Reorganization on Cerium(III) Oxidation Chemistry. Angewandte Chemie - International Edition, 2012, 51, 10159-10163.	7.2	80
128	A General and Modular Synthesis of Monoimidouranium(IV) Dihalides. Inorganic Chemistry, 2011, 50, 4235-4237.	1.9	56
129	Synthesis, Characterization, and Multielectron Reduction Chemistry of Uranium Supported by Redox-Active α-Diimine Ligands. Inorganic Chemistry, 2011, 50, 9838-9848.	1.9	101
130	Actinide Redox-Active Ligand Complexes: Reversible Intramolecular Electron-Transfer in U(dpp-BIAN) ₂ /U(dpp-BIAN) ₂ /THF). Inorganic Chemistry, 2010, 49, 924-933.	1.9	62
131	Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide and Lanthanoid-Actinide Complexes Possessing Redox-Active Bridging Ligands. Inorganic Chemistry, 2010, 49, 1995-2007.	1.9	49
132	1,4â€Dicyanobenzene as a Scaffold for the Preparation of Bimetallic Actinide Complexes Exhibiting Metal–Metal Communication. Chemistry - A European Journal, 2008, 14, 7782-7790.	1.7	49
133	Direct Comparison of the Magnetic and Electronic Properties of Samarocene and Ytterbocene Terpyridine Complexes. Inorganic Chemistry, 2008, 47, 5841-5849.	1.9	53
134	Probing the Chemistry, Electronic Structure and Redox Energetics in Organometallic Pentavalent Uranium Complexes. Inorganic Chemistry, 2008, 47, 11879-11891.	1.9	105
135	A Mild Protocol To Generate Uranium(IV) Mixed-Ligand Metallocene Complexes using Copper(I) Iodide. Organometallics, 2008, 27, 5371-5378.	1.1	63
136	Evidence for the Involvement of 5f Orbitals in the Bonding and Reactivity of Organometallic Actinide Compounds: Thorium(IV) and Uranium(IV) Bis(hydrazonato) Complexes. Journal of the American Chemical Society, 2008, 130, 17537-17551.	6.6	118
137	Ultrafast Spectroscopy of the Uranium(IV) and Thorium(IV) Bis(ketimide) Complexes (C5Me5)2An[â^Nâ•€(Ph)(CH2Ph)]2 (An = Th, U). Journal of Physical Chemistry A, 2008, 112, 7840-7847.	1.1	13
138	Organometallic Uranium(V)â^ʾImido Halide Complexes: From Synthesis to Electronic Structure and Bonding. Journal of the American Chemical Society, 2008, 130, 5272-5285.	6.6	182
139	A Family of Cyanide-Bridged Molecular Squares: Structural and Magnetic Properties of $[\{MIICl2\}2\{CoII(triphos)(CN)2\}2]\hat{A}\cdot xCH2Cl2$, M = Mn, Fe, Co, Ni, Zn. Inorganic Chemistry, 2008, 47, 2074-2082.	1.9	39
140	A Family of Mixed-Metal Cyanide Cubes with Alternating Octahedral and Tetrahedral Corners Exhibiting a Variety of Magnetic Behaviors Including Single Molecule Magnetism. Journal of the American Chemical Society, 2007, 129, 8139-8149.	6.6	164
141	Toward Actinide Molecular Magnetic Materials: Coordination Polymers of U(IV) and the Organic Acceptors TCNQ and TCNEâ€. Inorganic Chemistry, 2007, 46, 5528-5536.	1.9	37
142	Systematic Studies of Early Actinide Complexes:Â Thorium(IV) Fluoroketimides. Journal of the American Chemical Society, 2007, 129, 5139-5152.	6.6	50
143	Systematic Studies of Early Actinide Complexes:  Uranium(IV) Fluoroketimides. Inorganic Chemistry, 2007, 46, 7477-7488.	1.9	95
144	4fâ^'5f Heterotrimetallic Complexes Exhibiting Electrochemical and Magnetic Communication. Journal of the American Chemical Society, 2006, 128, 2198-2199.	6.6	61

#	Article	IF	CITATION
145	Ytterbocene Charge-Transfer Molecular Wire Complexes. Journal of the American Chemical Society, 2006, 128, 7230-7241.	6.6	72
146	Actinide-Mediated Cyclization of 1,2,4,5-Tetracyanobenzene: Synthesis and Characterization of Self-Assembled Trinuclear Thorium and Uranium Macrocycles. Angewandte Chemie - International Edition, 2006, 45, 2036-2041.	7.2	48
147	Ligand Substituent Effect Observed for Ytterbocene 4â€~-Cyano-2,2â€~:6â€~,2â€~Ââ€~-terpyridine. Inorganic Chem 2005, 44, 5911-5920.	nistry, 1.9	29
148	Unusual Magnetic Metal–Cyanide Cubes of Rell with Alternating Octahedral and Tetrahedral Corners. Angewandte Chemie - International Edition, 2004, 43, 4912-4915.	7.2	79
149	Molecular Cube of Relland MnIIThat Exhibits Single-Molecule Magnetism. Journal of the American Chemical Society, 2004, 126, 15004-15005.	6.6	245
150	Structural Characterization, Magnetic Properties, and Electrospray Mass Spectrometry of Two Jahnâ^Teller Isomers of the Single-Molecule Magnet [Mn12O12(CF3COO)16(H2O)4]. Inorganic Chemistry, 2004, 43, 1359-1369.	1.9	51
151	Magnetic properties of complex d 1 and d 5 ions: crystal field model and Jahn–Teller effect. Polyhedron, 2003, 22, 2545-2556.	1.0	14
152	New Paramagnetic Re(II) Compounds with Nitrile and Cyanide Ligands Prepared by Homolytic Scission of Dirhenium Complexes. Inorganic Chemistry, 2003, 42, 4256-4258.	1.9	52
153	Unusual Magnetic Behavior of Six-Coordinate, Mixed-Ligand Re(II) Complexes:Â Origin of a Strong Temperature-Independent Paramagnetismâ€. Journal of Physical Chemistry A, 2003, 107, 11102-11111.	1.1	37
154	Synthesis and Characterization of ReCl(H2)(AsMePh2)4, a Classical Hydride Complex; Reexamination of ReCl(H2)(PMePh2)4and Theoretical Calculations on Model Compounds. Inorganic Chemistry, 2001, 40, 3463-3467.	1.9	17