Richard J Hodes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291946/publications.pdf Version: 2024-02-01

RICHARD I HODES

#	Article	IF	CITATIONS
1	B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nature Communications, 2020, 11, 6264.	12.8	26
2	TCR Repertoires of Thymic Conventional and Regulatory T Cells: Identification and Characterization of Both Unique and Shared TCR Sequences. Journal of Immunology, 2020, 204, 858-867.	0.8	2
3	Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18983-18993.	7.1	18
4	The NIH Blueprint for Neuroscience Research Seeks Community Input on Future Neuroscience Investments. Journal of Neuroscience, 2019, 39, 774-775.	3.6	1
5	Neuroethics for the National Institutes of Health BRAIN Initiative. Journal of Neuroscience, 2018, 38, 10583-10585.	3.6	20
6	Co-stimulatory function in primary germinal center responses: CD40 and B7 are required on distinct antigen-presenting cells. Journal of Experimental Medicine, 2017, 214, 2795-2810.	8.5	54
7	Telomere Shortening, Inflammatory Cytokines, and Anti-Cytomegalovirus Antibody Follow Distinct Age-Associated Trajectories in Humans. Frontiers in Immunology, 2017, 8, 1027.	4.8	48
8	T ell development is regulated by the coordinated function of proximal and distal Lck promoters active at different developmental stages. European Journal of Immunology, 2016, 46, 2401-2408.	2.9	26
9	ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood, 2015, 126, 2291-2301.	1.4	13
10	CD28-CD80/86 and CD40-CD40L Interactions Promote Thymic Tolerance by Regulating Medullary Epithelial Cell and Thymocyte Development. Critical Reviews in Immunology, 2015, 35, 59-76.	0.5	7
11	Age-associated telomere attrition of lymphocytes <i>inÂvivo</i> is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clinical Science, 2015, 128, 367-377.	4.3	110
12	Regulation of T cell development by c-Cbl: essential role of Lck. International Immunology, 2015, 27, 245-251.	4.0	8
13	T Cell–B Cell Thymic Cross-Talk: Maintenance and Function of Thymic B Cells Requires Cognate CD40–CD40 Ligand Interaction. Journal of Immunology, 2014, 193, 5534-5544.	0.8	29
14	Downmodulation of Tumor Suppressor p53 by T Cell Receptor Signaling Is Critical for Antigen-Specific CD4+ T Cell Responses. Immunity, 2014, 40, 681-691.	14.3	84
15	ATM Influences the Efficiency of TCRÎ ² Rearrangement, Subsequent TCRÎ ² -Dependent T Cell Development, and Generation of the Pre-Selection TCRÎ ² CDR3 Repertoire. PLoS ONE, 2013, 8, e62188.	2.5	15
16	Cbl Enforces an SLP76-dependent Signaling Pathway for T Cell Differentiation. Journal of Biological Chemistry, 2009, 284, 4429-4438.	3.4	9
17	Immunoglobulin Class Switch Recombination Is Impaired in Atm-deficient Mice. Journal of Experimental Medicine, 2004, 200, 1111-1121.	8.5	152
18	Differential Requirements for Expression of CD80/86 and CD40 on B Cells for T-Dependent Antibody Responses In Vivo. Journal of Immunology, 2003, 170, 781-787.	0.8	43

RICHARD J HODES

#	Article	IF	CITATIONS
19	Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunological Reviews, 1997, 160, 43-54.	6.0	187
20	Superantigenic characteristics of mouse mammary tumor viruses play a critical role in susceptibility to infection in mice. Immunologic Research, 1995, 14, 58-68.	2.9	1
21	Functional role of CD44 (Pgp-1) on activated B cells. Immunologic Research, 1991, 10, 15-27.	2.9	21
22	Function of Autoreactive T Cells in Immune Responses. Immunological Reviews, 1990, 116, 15-31.	6.0	31
23	Properties of the Mls System: A Revised Formulation of Mls Genetics and an Analysis of T-Cell recognition of Mls Determinants. Immunological Reviews, 1989, 107, 5-28.	6.0	20
24	Preferential expression of the T-cell receptor Vβ3 gene by Mlsc reactive T cells. Nature, 1988, 335, 827-830.	27.8	122
25	Secretory processes in lymphocyte function. Bioscience Reports, 1987, 7, 345-353.	2.4	2
26	Helper T cell requirements for T15 idiotype expression on phosphorylcholine-specific antibodies. European Journal of Immunology, 1985, 15, 564-569.	2.9	5
27	Major Histocompatibility Complex Restricted Self-Recognition by B Cells and T Cells in Responses to TNP-Ficoll. Immunological Reviews, 1983, 69, 25-50.	6.0	4
28	The expression and functional involvement of nuclease-specific idiotype on nuclease-primed helper T cells. European Journal of Immunology, 1982, 12, 113-120.	2.9	9
29	Distinct B Cell Subpopulations Differ in Their Genetic Requirements for Activation by T Helper Cells. Immunological Reviews, 1982, 64, 137-160.	6.0	60