Chuanbin Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291851/publications.pdf

Version: 2024-02-01

272 papers

17,348 citations

69 h-index 120

295 all docs 295 docs citations

times ranked

295

19974 citing authors

g-index

#	Article	IF	CITATIONS
1	Aggregated carbon dotsâ€loaded macrophages treat sepsis by eliminating multidrugâ€resistant bacteria and attenuating inflammation. Aggregate, 2023, 4, .	9.9	17
2	Neural mechanism mimetic selective electronic nose based on programmed M13 bacteriophage. Biosensors and Bioelectronics, 2022, 196, 113693.	10.1	18
3	Protein nanoparticles directed cancer imaging and therapy. Nano Convergence, 2022, 9, 2.	12.1	26
4	Advances in the Development of Phage-Based Probes for Detection of Bio-Species. Biosensors, 2022, 12, 30.	4.7	16
5	Establishment of a Knowledgeâ€andâ€Dataâ€Driven Artificial Intelligence System with Robustness and Interpretability in Laboratory Medicine. Advanced Intelligent Systems, 2022, 4, .	6.1	3
6	T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. Advanced Science, 2022, 9, e2103645.	11.2	27
7	Emulating interactions between microorganisms and tumor microenvironment to develop cancer theranostics. Theranostics, 2022, 12, 2833-2859.	10.0	15
8	3D Knee Kinematic Parameters Effectively Diagnose Knee Osteoarthritis and Assess Its Therapeutic Strategy. Advanced Intelligent Systems, 2022, 4, .	6.1	1
9	Detection, prevention and treatment of COVIDâ€19 and opportunities for nanobiotechnology. View, 2022, 3, .	5. 3	8
10	Highly Effective Stroke Therapy Enabled by Genetically Engineered Viral Nanofibers. Advanced Materials, 2022, 34, e2201210.	21.0	20
11	Bionanoparticles in cancer imaging, diagnosis, and treatment. View, 2022, 3, .	5.3	40
12	New Insights for Biosensing: Lessons from Microbial Defense Systems. Chemical Reviews, 2022, 122, 8126-8180.	47.7	15
13	Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials, 2022, 283, 121474.	11.4	9
14	Binding Peptide-Promoted Biofunctionalization of Graphene Paper with Hydroxyapatite for Stimulating Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 350-360.	8.0	7
15	Polyethyleneimine-Enabled Tunable Electrostatic Nanoparticle Assemblies on Ultrathin Protein Nanofibers for Plasmonics-Based Solar Energy Harvesting. ACS Applied Nano Materials, 2022, 5, 832-839.	5.0	2
16	Monitoring cardiovascular disease severity using near-infrared mechanoluminescent materials as a built-in indicator. Materials Horizons, 2022, 9, 1658-1669.	12.2	17
17	Exploring phage engineering to advance nanobiotechnology. Materials Today Nano, 2022, 19, 100229.	4.6	3
18	Phageâ€Derived Oncolytic Viruses with 3C from Seneca Valley Virus for Targeted Therapy of Cervical Cancer. Advanced Therapeutics, 2022, 5, .	3.2	0

#	Article	IF	CITATIONS
19	Understanding the interactions between bone mineral crystals and their binding peptides derived from filamentous phage. Materials Today Advances, 2022, 15, 100263.	5.2	3
20	High quantum efficiency and stability of biohybrid quantum dots nanojunctions in bacteriophage-constructed perovskite. Materials Today Nano, 2021, 13, 100099.	4.6	9
21	Laser-controlled projection of quantum dot dipoles using metal-oxide plasmonic metastructures: maintaining spin polarization memory. Journal of Materials Chemistry C, 2021, 9, 14269-14277.	5.5	3
22	3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting. Materials Horizons, 2021, 8, 2097-2105.	12.2	9
23	Biomineralization Directed by Prenucleated Calcium and Phosphorus Nanoclusters Improving Mechanical Properties and Osteogenic Potential of <i>Antheraea pernyi</i> Silk Fibroinâ€Based Artificial Periosteum. Advanced Healthcare Materials, 2021, 10, e2001695.	7.6	13
24	Weak Electrostatic Interaction Enabled Highly Oriented Assembly of Gold Nanorods onto Ultrathin Flagella Bionanofibers. Small Structures, 2021, 2, 2000121.	12.0	5
25	High-throughput screening and rational design of biofunctionalized surfaces with optimized biocompatibility and antimicrobial activity. Nature Communications, 2021, 12, 3757.	12.8	20
26	Naked-eye counting of pathogenic viruses by phage-gold nanobiomaterials as probes. Materials Today Advances, 2021, 10, 100122.	5.2	6
27	Establishment of a Machine Learning Model for Early and Differential Diagnosis of Pancreatic Ductal Adenocarcinoma Using Laboratory Routine Data. Advanced Intelligent Systems, 2021, 3, 2100033.	6.1	6
28	Quantifying contrast of latent fingerprints developed by fluorescent nanomaterials based on spectral analysis. Talanta, 2021, 231, 122138.	5.5	11
29	Biomimetic Nucleation of Metal–Organic Frameworks on Silk Fibroin Nanoparticles for Designing Core–Shell-Structured pH-Responsive Anticancer Drug Carriers. ACS Applied Materials & Drug Carriers &	8.0	20
30	Simultaneous ultrasensitive detection of two breast cancer microRNA biomarkers by using a dual nanoparticle/nanosheet fluorescence resonance energy transfer sensor. Materials Today Advances, 2021, 12, 100163.	5.2	8
31	Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nature Biomedical Engineering, 2021, 5, 1189-1201.	22.5	67
32	Detection of a single circulating tumor cell using a genetically engineered antibody-like phage nanofiber probe. Materials Today Advances, 2021, 12, 100168.	5.2	6
33	Arginine induces protein self-assembly into nanofibers for triggering osteogenic differentiation of stem cells. Journal of Materials Chemistry B, 2021, 9, 9764-9769.	5.8	2
34	Immunotherapy for Tumor Metastasis by Artificial Antigen-Presenting Cells via Targeted Microenvironment Regulation and T-Cell Activation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55890-55901.	8.0	16
35	Rapid Naked-Eye Detection of a Liver Disease Biomarker by Discovering Its Monoclonal Antibody to Functionalize Engineered Red-Colored Bacteria Probes. ACS Omega, 2021, 6, 32005-32010.	3.5	0
36	Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. Journal of Materials Chemistry B, 2021, , .	5.8	12

#	Article	IF	Citations
37	Circâ€MALAT1 Functions as Both an mRNA Translation Brake and a microRNA Sponge to Promote Selfâ€Renewal of Hepatocellular Cancer Stem Cells. Advanced Science, 2020, 7, 1900949.	11.2	74
38	Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair. Biomaterials, 2020, 232, 119644.	11.4	45
39	On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics, 2020, 10, 109-122.	10.0	68
40	$HIF-1\hat{1}\pm-Mediated$ Mitophagy Determines ZnO Nanoparticle-Induced Human Osteosarcoma Cell Death both In Vitro and In Vivo. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48296-48309.	8.0	34
41	Sensitive protein detection and visualization using proteinâ€binding peptides. Microscopy Research and Technique, 2020, 83, 1165-1170.	2.2	0
42	Dual-mode fluorescent development of latent fingerprints using NaYbF4:Tm upconversion nanomaterials. Materials Today Advances, 2020, 8, 100113.	5 . 2	16
43	Human Mesenchymal Stem Cell Derived Exosomes Enhance Cellâ€Free Bone Regeneration by Altering Their miRNAs Profiles. Advanced Science, 2020, 7, 2001334.	11.2	144
44	Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics. Journal of Materials Chemistry B, 2020, 8, 8607-8613.	5.8	42
45	Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nature Communications, 2020, 11, 2687.	12.8	43
46	Selectively Suppressing Tumor Angiogenesis for Targeted Breast Cancer Therapy by Genetically Engineered Phage. Advanced Materials, 2020, 32, e2001260.	21.0	40
47	Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. Journal of Hepatology, 2020, 73, 1155-1169.	3.7	111
48	Low Expression of Smurf1 Enhances the Chemosensitivity of Human Colorectal Cancer to Gemcitabine and Cisplatin in Patient-Derived Xenograft Models. Translational Oncology, 2020, 13, 100804.	3.7	6
49	Green Gas-Mediated Cross-Linking Generates Biomolecular Hydrogels with Enhanced Strength and Excellent Hemostasis for Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 13622-13633.	8.0	76
50	Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1623.	6.1	12
51	Transcriptomic analysis reveals that IL-1R8/Sigirr is a novel macrophage migration regulator and suppresses macrophage proliferation through p38 MAPK signaling pathway. Biomedicine and Pharmacotherapy, 2020, 124, 109846.	5 . 6	6
52	Methylation Status of the <i>Nanog</i> Promoter Determines the Switch between Cancer Cells and Cancer Stem Cells. Advanced Science, 2020, 7, 1903035.	11.2	29
53	Plasmonic Hotâ€Electronâ€Induced Control of Emission Intensity and Dynamics of Visible and Infrared Semiconductor Quantum Dots. Advanced Materials Interfaces, 2020, 7, 1901998.	3.7	4
54	Quantification of silk protein using phage nanofibers with high binding specificity. Journal of Materials Chemistry B, 2020, 8, 5189-5194.	5. 8	6

#	Article	IF	Citations
55	Wet-adhesive, haemostatic and antimicrobial bilayered composite nanosheets for sealing and healing soft-tissue bleeding wounds. Biomaterials, 2020, 252, 120018.	11.4	62
56	Nanomaterials as photothermal therapeutic agents. Progress in Materials Science, 2019, 99, 1-26.	32.8	442
57	Spontaneous evolution of human skin fibroblasts into wound-healing keratinocyte-like cells. Theranostics, 2019, 9, 5200-5213.	10.0	16
58	Nanoparticle–Plant Interactions: Twoâ€Way Traffic. Small, 2019, 15, e1901794.	10.0	132
59	Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Materials and Design, 2019, 180, 107940.	7.0	112
60	Genetically Engineered Flagella Form Collagen-like Ordered Structures for Inducing Stem Cell Differentiation. IScience, 2019, 17, 277-287.	4.1	5
61	An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials, 2019, 218, 119190.	11.4	131
62	Self-Assembled Peptide Nanofibers Display Natural Antimicrobial Peptides to Selectively Kill Bacteria without Compromising Cytocompatibility. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28681-28689.	8.0	59
63	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
64	Biomaterials based on phages and other viruses. Advanced Drug Delivery Reviews, 2019, 145, 1-3.	13.7	4
65	Polydopamine-Coated <i>Antheraea pernyi</i> (<i>A. pernyi</i>) Silk Fibroin Films Promote Cell Adhesion and Wound Healing in Skin Tissue Repair. ACS Applied Materials & Diterfaces, 2019, 11, 34736-34743.	8.0	87
66	Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials, 2019, 225, 119520.	11.4	92
67	Optimierung photodynamischer Krebstherapien auf der Grundlage physikalischâ€chemischer Faktoren. Angewandte Chemie, 2019, 131, 14204-14219.	2.0	10
68	Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angewandte Chemie - International Edition, 2019, 58, 14066-14080.	13.8	133
69	3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 2019, 6, 733-742.	12.2	148
70	Ultralong tumor retention of theranostic nanoparticles with short peptide-enabled active tumor homing. Materials Horizons, 2019, 6, 1845-1853.	12.2	27
71	Bacterial flagella as an osteogenic differentiation nano-promoter. Nanoscale Horizons, 2019, 4, 1286-1292.	8.0	6
72	Bone Defect Model Dependent Optimal Pore Sizes of 3Dâ€Plotted Betaâ€Tricalcium Phosphate Scaffolds for Bone Regeneration. Small Methods, 2019, 3, 1900237.	8.6	29

#	Article	IF	Citations
73	Air-plasma treatment promotes bone-like nano-hydroxylapatite formation on protein films for enhanced <i>in vivo</i> osteogenesis. Biomaterials Science, 2019, 7, 2326-2334.	5.4	16
74	Protein-Induced Gold Nanoparticle Assembly for Improving the Photothermal Effect in Cancer Therapy. ACS Applied Materials & Damp; Interfaces, 2019, 11, 11136-11143.	8.0	77
75	Hierarchical Ordered Assembly of Genetically Modifiable Viruses into Nanoridgeâ€inâ€Microridge Structures. Advanced Materials, 2019, 31, e1905577.	21.0	15
76	Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomaterials Science, 2019, 7, 5232-5237.	5.4	59
77	Peptides encoded by noncoding genes: challenges and perspectives. Signal Transduction and Targeted Therapy, 2019, 4, 57.	17.1	22
78	Phage-based vaccines. Advanced Drug Delivery Reviews, 2019, 145, 40-56.	13.7	68
79	Bacteriophage-based biomaterials for tissue regeneration. Advanced Drug Delivery Reviews, 2019, 145, 73-95.	13.7	42
80	Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Biomaterials, 2019, 188, 130-143.	11.4	64
81	CaZnOS:Nd ³⁺ Emits Tissue-Penetrating near-Infrared Light upon Force Loading. ACS Applied Materials & Discrete Loading. ACS Applied Materials & Di	8.0	71
82	Evolutionary selection of personalized melanoma cell/tissue dual-homing peptides for guiding bionanofibers to malignant tumors. Chemical Communications, 2018, 54, 1631-1634.	4.1	22
83	Cancer Nanotheranostics: Actively Targeted Deep Tissue Imaging and Photothermalâ€Chemo Therapy of Breast Cancer by Antibodyâ€Functionalized Drugâ€Loaded Xâ€Rayâ€Responsive Bismuth Sulfide@Mesoporous Silica Core–Shell Nanoparticles (Adv. Funct. Mater. 5/2018). Advanced Functional Materials, 2018, 28, 1870034.	14.9	6
84	Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating	8.0	142
85	Nontoxic engineered virus nanofibers as an efficient agent for the prevention and detection of fungal infection. Nano Research, $2018,11,2248-2255.$	10.4	9
86	Actively Targeted Deep Tissue Imaging and Photothermal hemo Therapy of Breast Cancer by Antibodyâ€Functionalized Drugâ€Loaded Xâ€Rayâ€Responsive Bismuth Sulfide@Mesoporous Silica Core–Shell Nanoparticles. Advanced Functional Materials, 2018, 28, 1704623.	14.9	120
87	Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42146-42154.	8.0	81
88	Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo. ACS Applied Materials & Amp; Interfaces, 2018, 10, 35830-35837.	8.0	34
89	Encoding activities of non-coding RNAs. Theranostics, 2018, 8, 2496-2507.	10.0	42
90	Protein Nanofibril Assemblies Templated by Graphene Oxide Nanosheets Accelerate Early Cell Adhesion and Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 31988-31997.	8.0	37

#	Article	IF	Citations
91	A Rapidly Selfâ€Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility. Angewandte Chemie - International Edition, 2018, 57, 9008-9012.	13.8	149
92	A Rapidly Selfâ€Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility. Angewandte Chemie, 2018, 130, 9146-9150.	2.0	36
93	Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small, 2018, 14, e1801183.	10.0	52
94	Difunctional bacteriophage conjugated with photosensitizers for Candida albicans -targeting photodynamic inactivation. International Journal of Nanomedicine, 2018, Volume 13, 2199-2216.	6.7	25
95	3Dâ€Plotted Betaâ€Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Criticalâ€Sized Calvarial Defect Rat Model. Advanced Healthcare Materials, 2018, 7, e1800441.	7.6	74
96	Cancer cell targeting, controlled drug release and intracellular fate of biomimetic membrane-encapsulated drug-loaded nano-graphene oxide nanohybrids. Journal of Materials Chemistry B, 2018, 6, 5080-5090.	5.8	27
97	Fabrication of Sericin/Agrose Gel Loaded Lysozyme and Its Potential in Wound Dressing Application. Nanomaterials, 2018, 8, 235.	4.1	33
98	Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone. Acta Biomaterialia, 2018, 77, 365-379.	8.3	34
99	Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in Polymer Science, 2018, 81, 144-162.	24.7	225
100	Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy. Methods in Molecular Biology, 2018, 1776, 643-652.	0.9	7
101	Cross Talk Between Autophagy and Apoptosis Contributes to ZnO Nanoparticleâ€Induced Human Osteosarcoma Cell Death. Advanced Healthcare Materials, 2018, 7, e1800332.	7.6	31
102	Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair. Light: Science and Applications, 2018, 7, 1.	16.6	301
103	Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway. Biomaterials, 2018, 178, 281-292.	11.4	72
104	Metallic Nanoclusters for Cancer Imaging and Therapy. Current Medicinal Chemistry, 2018, 25, 1379-1396.	2.4	66
105	Quantum sensing using coherent control of near-field polarization of quantum dot-metallic nanoparticle molecules. Journal of Applied Physics, 2017, 121, .	2.5	15
106	Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells. Biomaterials, 2017, 121, 55-63.	11.4	18
107	Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods. Journal Physics D: Applied Physics, 2017, 50, 145401.	2.8	13
108	Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Advanced Functional Materials, 2017, 27, 1606243.	14.9	169

#	Article	IF	Citations
109	In situ protein-templated porous protein–hydroxylapatite nanocomposite microspheres for pH-dependent sustained anticancer drug release. Journal of Materials Chemistry B, 2017, 5, 3945-3954.	5.8	30
110	Assessment of fracture risk in proximal tibia with tumorous bone defects by a finite element method. Microscopy Research and Technique, 2017, 80, 975-984.	2.2	12
111	Prospects of siRNA applications in regenerative medicine. International Journal of Pharmaceutics, 2017, 524, 312-329.	5.2	28
112	Iceâ€Templated Protein Nanoridges Induce Bone Tissue Formation. Advanced Functional Materials, 2017, 27, 1703726.	14.9	33
113	Enhanced cell uptake of fluorescent drug-loaded nanoparticles via an implantable photothermal fibrous patch for more effective cancer cell killing. Journal of Materials Chemistry B, 2017, 5, 7504-7511.	5.8	18
114	3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Scientific Reports, 2017, 7, 7626.	3.3	52
115	Virus-Derived Peptides for Clinical Applications. Chemical Reviews, 2017, 117, 10377-10402.	47.7	55
116	Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system. Scientific Reports, 2017, 7, 4080.	3.3	32
117	Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosensors and Bioelectronics, 2017, 98, 305-309.	10.1	92
118	Nucleation and Assembly of Silica into Protein-Based Nanocomposites as Effective Anticancer Drug Carriers Using Self-Assembled Silk Protein Nanostructures as Biotemplates. ACS Applied Materials & Amp; Interfaces, 2017, 9, 22259-22267.	8.0	39
119	Phageâ€Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angewandte Chemie - International Edition, 2017, 56, 1964-1992.	13.8	131
120	Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika f $\tilde{A}^{1}\!\!/\!\!4$ r eine Pr \tilde{A} sionsmedizin. Angewandte Chemie, 2017, 129, 1992-2022.	2.0	10
121	Guiding nanomaterials to tumors for breast cancer precision medicine: from tumor-targeting small-molecule discovery to targeted nanodrug delivery. NPG Asia Materials, 2017, 9, e452-e452.	7.9	42
122	Cancer-derived Circulating MicroRNAs Promote Tumor Angiogenesis by Entering Dendritic Cells to Degrade Highly Complementary MicroRNAs. Theranostics, 2017, 7, 1407-1421.	10.0	27
123	Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration. Theranostics, 2017, 7, 3387-3397.	10.0	67
124	Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina <i>In Vivo</i> . Theranostics, 2016, 6, 1514-1527.	10.0	38
125	Ti nanorod arrays with a medium density significantly promote osteogenesis and osteointegration. Scientific Reports, 2016, 6, 19047.	3.3	15
126	Built-in microscale electrostatic fields induced by anatase–rutile-phase transition in selective areas promote osteogenesis. NPG Asia Materials, 2016, 8, e243-e243.	7.9	41

#	Article	IF	CITATIONS
127	Size-Dependent Mechanism of Intracellular Localization and Cytotoxicity of Mono-Disperse Spherical Mesoporous Nano- and Micron-Bioactive Glass Particles. Journal of Biomedical Nanotechnology, 2016, 12, 863-877.	1.1	34
128	Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine. Accounts of Chemical Research, 2016, 49, 1111-1120.	15.6	83
129	Bio-Templated Growth of Bone Minerals from Modified Simulated Body Fluid on Nanofibrous Decellularized Natural Tissues. Journal of Biomedical Nanotechnology, 2016, 12, 753-761.	1.1	23
130	Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24306-24309.	8.0	60
131	Vaccine Against Fungal Infections: Genetically Engineered Virus Nanofibers as an Efficient Vaccine for Preventing Fungal Infection (Adv. Healthcare Mater. 7/2016). Advanced Healthcare Materials, 2016, 5, 746-746.	7.6	0
132	A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release. Langmuir, 2016, 32, 9083-9090.	3.5	45
133	Tuning photothermal properties of gold nanodendrites for inÂvivo cancer therapy within a wide near infrared range by simply controlling their degree of branching. Biomaterials, 2016, 104, 138-144.	11.4	58
134	3D-printed guiding templates for improved osteosarcoma resection. Scientific Reports, 2016, 6, 23335.	3.3	73
135	<i>In Vitro</i> and <i>in Vivo</i> Mechanism of Bone Tumor Inhibition by Selenium-Doped Bone Mineral Nanoparticles. ACS Nano, 2016, 10, 9927-9937.	14.6	164
136	A Multifunctional Nanocrystalline CaF ₂ :Tm,Yb@mSiO ₂ System for Dualâ€Triggered and Optically Monitored Doxorubicin Delivery. Particle and Particle Systems Characterization, 2016, 33, 896-905.	2.3	19
137	Identification of Novel Short BaTiO ₃ -Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO ₃ Polycrystalline Nanowires at Room Temperature. ACS Applied Materials & Diterfaces, 2016, 8, 30714-30721.	8.0	18
138	Toward a Molecular Understanding of the Antibacterial Mechanism of Copperâ€Bearing Titanium Alloys against <i>Staphylococcus aureus</i> . Advanced Healthcare Materials, 2016, 5, 557-566.	7.6	140
139	Genetically Engineered Virus Nanofibers as an Efficient Vaccine for Preventing Fungal Infection. Advanced Healthcare Materials, 2016, 5, 786-794.	7.6	28
140	Importance of dual delivery systems for bone tissue engineering. Journal of Controlled Release, 2016, 225, 152-169.	9.9	146
141	Optically Monitoring Mineralization and Demineralization on Photoluminescent Bioactive Nanofibers. Langmuir, 2016, 32, 3226-3233.	3.5	17
142	The effect and fate of water-soluble carbon nanodots in maize (<i>Zea mays</i> L.). Nanotoxicology, 2016, 10, 818-828.	3.0	53
143	Heterologous strategy enhancing the sensitivity of the fluorescence polarization immunoassay of clinafloxacin in goat milk. Journal of the Science of Food and Agriculture, 2016, 96, 1341-1346.	3.5	21
144	Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission. Journal of Applied Physics, 2015, 118, 124302.	2.5	7

#	Article	IF	CITATIONS
145	Influence of Surrounding Cations on the Surface Degradation of Magnesium Alloy Implants under a Compressive Pressure. Langmuir, 2015, 31, 13561-13570.	3.5	14
146	Seleniteâ€Releasing Bone Mineral Nanoparticles Retard Bone Tumor Growth and Improve Healthy Tissue Functions In Vivo. Advanced Healthcare Materials, 2015, 4, 1813-1818.	7.6	28
147	Synthesis of CaTiO ₃ Nanofibers with Controllable Drugâ€Release Kinetics. European Journal of Inorganic Chemistry, 2015, 2015, 4532-4538.	2.0	11
148	Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). International Journal of Environmental Research and Public Health, 2015, 12, 15100-15109.	2.6	186
149	Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28110-28115.	8.0	173
150	Reiterated Targeting Peptides on the Nanoparticle Surface Significantly Promote Targeted Vascular Endothelial Growth Factor Gene Delivery to Stem Cells. Biomacromolecules, 2015, 16, 3897-3903.	5.4	19
151	Effective Spatial Separation of PC12 and NIH3T3 Cells by the Microgrooved Surface of Biocompatible Polymer Substrates. Langmuir, 2015, 31, 6797-6806.	3.5	17
152	Addition of Zn to the ternary Mg–Ca–Sr alloys significantly improves their antibacterial properties. Journal of Materials Chemistry B, 2015, 3, 6676-6689.	5.8	72
153	Chimeric Protein Template-Induced Shape Control of Bone Mineral Nanoparticles and Its Impact on Mesenchymal Stem Cell Fate. Biomacromolecules, 2015, 16, 1987-1996.	5.4	36
154	Synthesis of NIR-Responsive NaYF ₄ :Yb,Er Upconversion Fluorescent Nanoparticles Using an Optimized Solvothermal Method and Their Applications in Enhanced Development of Latent Fingerprints on Various Smooth Substrates. Langmuir, 2015, 31, 7084-7090.	3.5	130
155	Ultrasensitive Rapid Detection of Human Serum Antibody Biomarkers by Biomarker-Capturing Viral Nanofibers. ACS Nano, 2015, 9, 4475-4483.	14.6	77
156	NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state. Nano Research, 2015, 8, 1800-1810.	10.4	130
157	Ca ²⁺ -induced self-assembly of Bombyx mori silk sericin into a nanofibrous network-like protein matrix for directing controlled nucleation of hydroxylapatite nano-needles. Journal of Materials Chemistry B, 2015, 3, 2455-2462.	5.8	58
158	Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2015, 11, 447-456.	1.1	35
159	Silk as a potential candidate for bone tissue engineering. Journal of Controlled Release, 2015, 215, 112-128.	9.9	135
160	Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chemical Research in Toxicology, 2015, 28, 1815-1822.	3.3	217
161	Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an <i>in Vitro</i>	8.0	53
162	Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients. Nano Research, 2015, 8, 3562-3570.	10.4	22

#	Article	IF	Citations
163	Near-infrared luminescent CaTiO ₃ :Nd ³⁺ nanofibers with tunable and trackable drug release kinetics. Journal of Materials Chemistry B, 2015, 3, 7449-7456.	5.8	34
164	Phage-mediated counting by the naked eye of miRNA molecules at attomolar concentrations in a Petri dish. Nature Materials, 2015, 14, 1058-1064.	27.5	81
165	"Cleaning―the surface of hydroxyapatite nanorods by a reaction-dissolution approach. Journal of Materials Chemistry B, 2015, 3, 7667-7672.	5.8	8
166	pH-Triggered SrTiO ₃ :Er Nanofibers with Optically Monitored and Controlled Drug Delivery Functionality. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25514-25521.	8.0	25
167	Reversibly Controlling Preferential Protein Adsorption on Bone Implants by Using an Applied Weak Potential as a Switch. Angewandte Chemie - International Edition, 2014, 53, 13068-13072.	13.8	40
168	Untangling the Effects of Peptide Sequences and Nanotopographies in a Biomimetic Niche for Directed Differentiation of iPSCs by Assemblies of Genetically Engineered Viral Nanofibers. Nano Letters, 2014, 14, 6850-6856.	9.1	78
169	Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide. Nanotechnology, 2014, 25, 155701.	2.6	19
170	Phage Nanofibers Induce Vascularized Osteogenesis in 3D Printed Bone Scaffolds. Advanced Materials, 2014, 26, 4961-4966.	21.0	204
171	Stable biofunctionalization of hydroxyapatite (HA) surfaces by HA-binding/osteogenic modular peptides for inducing osteogenic differentiation of mesenchymal stem cells. Biomaterials Science, 2014, 2, 1779-1786.	5.4	32
172	Tuning nano-architectures and improving bioactivity of conducting polypyrrole coating on bone implants by incorporating bone-borne small molecules. Journal of Materials Chemistry B, 2014, 2, 7872-7876.	5.8	17
173	Nanoparticle-Assisted Targeted Delivery of Eye-Specific Genes to Eyes Significantly Improves the Vision of Blind Mice In Vivo. Nano Letters, 2014, 14, 5257-5263.	9.1	93
174	Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates. Journal of Applied Physics, 2014, 116, 114301.	2.5	17
175	Tuning Molecular Weights of <i>Bombyx mori (B. mori)</i> Silk Sericin to Modify Its Assembly Structures and Materials Formation. ACS Applied Materials & Structures & Structur	8.0	55
176	Stem Cells Loaded with Nanoparticles as a Drug Carrier for In Vivo Breast Cancer Therapy. Advanced Materials, 2014, 26, 4627-4631.	21.0	94
177	Chemical functionalization of bone implants with nanoparticle-stabilized chitosan and methotrexate for inhibiting both osteoclastoma formation and bacterial infection. Journal of Materials Chemistry B, 2014, 2, 5952.	5.8	25
178	Directing the fate of human and mouse mesenchymal stem cells by hydroxyl–methyl mixed self-assembled monolayers with varying wettability. Journal of Materials Chemistry B, 2014, 2, 4794.	5.8	73
179	Biomimetic Nucleation of Hydroxyapatite Crystals Mediated by <i>Antheraea pernyi</i> Silk Sericin Promotes Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stem Cells. Biomacromolecules, 2014, 15, 1185-1193.	5.4	91
180	Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Scientific Reports, 2014, 4, 7380.	3.3	30

#	Article	IF	Citations
181	Phage as a Template to Grow Bone Mineral Nanocrystals. Methods in Molecular Biology, 2014, 1108, 123-135.	0.9	7
182	Using Phage as a Platform to Select Cancer Cell-Targeting Peptides. Methods in Molecular Biology, 2014, 1108, 57-68.	0.9	14
183	Mesoporous iron oxide nanoparticles prepared by polyacrylic acid etching and their application in gene delivery to mesenchymal stem cells. Microscopy Research and Technique, 2013, 76, 936-941.	2.2	23
184	Silicaâ∈Based Branched Hollow Microfibers as a Biomimetic Extracellular Matrix for Promoting Tumor Cell Growth In Vitro and In Vivo. Advanced Materials, 2013, 25, 2492-2496.	21.0	25
185	Virusâ€Mimetic Cytoplasmâ€Cleavable Magnetic/Silica Nanoclusters for Enhanced Gene Delivery to Mesenchymal Stem Cells. Angewandte Chemie - International Edition, 2013, 52, 11278-11281.	13.8	73
186	Theoretical Investigation of Optical Detection and Recognition of Single Biological Molecules Using Coherent Dynamics of Exciton-Plasmon Coupling. Journal of Physical Chemistry C, 2013, 117, 17344-17351.	3.1	12
187	Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements. Scientific Reports, 2013, 3, 1242.	3.3	80
188	One-pot synthesis of surface roughness controlled hollow silica spheres with enhanced drug loading and release profiles under ambient conditions in aqueous solutions. Journal of Materials Chemistry B, 2013, 1, 5515.	5.8	24
189	Controlled Alignment of Filamentous Supramolecular Assemblies of Biomolecules into Centimeterâ€Scale Highly Ordered Patterns by Using Natureâ€Inspired Magnetic Guidance. Angewandte Chemie - International Edition, 2013, 52, 11750-11754.	13.8	30
190	Bacteriophage Bionanowire as a Carrier for Both Cancer†Targeting Peptides and Photosensitizers and its use in Selective Cancer Cell Killing by Photodynamic Therapy. Small, 2013, 9, 215-221.	10.0	84
191	Virus-based Photo-Responsive Nanowires Formed By Linking Site-Directed Mutagenesis and Chemical Reaction. Scientific Reports, 2013, 3, 1820.	3.3	34
192	Synergetic Targeted Delivery of Sleepingâ€Beauty Transposon System to Mesenchymal Stem Cells Using LPD Nanoparticles Modified with a Phageâ€Displayed Targeting Peptide. Advanced Functional Materials, 2013, 23, 1172-1181.	14.9	72
193	Oxide formation on biological nanostructures via a structure-directing agent: towards an understanding of precise structural transcription. Chemical Science, 2012, 3, 2639.	7.4	44
194	Morphology-controlled synthesis of silica nanotubes through pH- and sequence-responsive morphological change of bacterial flagellar biotemplates. Journal of Materials Chemistry, 2012, 22, 15702.	6.7	28
195	Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors. Journal of Alloys and Compounds, 2012, 525, 154-158.	5.5	39
196	Biotemplated Synthesis of Hollow Doubleâ€Layered Core/Shell Titania/Silica Nanotubes under Ambient Conditions. Small, 2012, 8, 3691-3697.	10.0	37
197	Flagellar Display of Bone-Protein-Derived Peptides for Studying Peptide-Mediated Biomineralization. Langmuir, 2012, 28, 16338-16346.	3.5	14
198	Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin biâ€ŧemplateâ€ɨnduced biomimetic bone substitutes. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2929-2938.	4.0	43

#	Article	IF	Citations
199	Controlling Nanostructures of Mesoporous Silica Fibers by Supramolecular Assembly of Genetically Modifiable Bacteriophages. Angewandte Chemie - International Edition, 2012, 51, 6411-6415.	13.8	61
200	Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection. Analytical Biochemistry, 2012, 421, 673-679.	2.4	68
201	Bio-imaging, detection and analysis by using nanostructures as SERS substrates. Journal of Materials Chemistry, 2011, 21, 5190.	6.7	114
202	Self-Assembly and Mineralization of Genetically Modifiable Biological Nanofibers Driven by \hat{l}^2 -Structure Formation. Biomacromolecules, 2011, 12, 2193-2199.	5.4	62
203	Controllable synthesis of NaYF4 : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans. Journal of Materials Chemistry, 2011, 21, 2632.	6.7	115
204	Novel Microwave-Assisted Solvothermal Synthesis of NaYF ₄ :Yb,Er Upconversion Nanoparticles and Their Application in Cancer Cell Imaging. Langmuir, 2011, 27, 14632-14637.	3.5	107
205	Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 710-729.	3.3	438
206	Bio-inspired supramolecular self-assembly towards soft nanomaterials. Frontiers of Materials Science, 2011, 5, 247-265.	2.2	38
207	Transmission electron microscopy as a tool to image bioinorganic nanohybrids: The case of phageâ€gold nanocomposites. Microscopy Research and Technique, 2011, 74, 627-635.	2.2	37
208	Introduction: Bio and nano imaging and analysis. Microscopy Research and Technique, 2011, 74, 559-562.	2.2	1
209	Development of a successive targeting liposome with multiâ€ligand for efficient targeting gene delivery. Journal of Gene Medicine, 2011, 13, 290-301.	2.8	20
210	Viscosity Gradient as a Novel Mechanism for the Centrifugationâ€Based Separation of Nanoparticles. Advanced Materials, 2011, 23, 4880-4885.	21.0	55
211	Controlled Selfâ€Assembly of Rodlike Bacterial Pili Particles into Ordered Lattices. Angewandte Chemie - International Edition, 2011, 50, 6264-6268.	13.8	33
212	Inside Cover: Controlled Selfâ€Assembly of Rodlike Bacterial Pili Particles into Ordered Lattices (Angew. Chem. Int. Ed. 28/2011). Angewandte Chemie - International Edition, 2011, 50, 6184-6184.	13.8	0
213	Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries. Biomaterials, 2011, 32, 4744-4752.	11.4	103
214	Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. Journal of Biotechnology, 2011, 153, 125-132.	3.8	97
215	Chapter 10. Filamentous Phage-templated Synthesis and Assembly of Inorganic Nanomaterials. RSC Nanoscience and Nanotechnology, 2011, , 220-244.	0.2	3
216	Detection of serum anti-P53 antibodies from patients with colorectal cancer in China using a combination of P53- and phage-ELISA: correlation to clinical parameters. Asian Pacific Journal of Cancer Prevention, 2011, 12, 2921-4.	1.2	6

#	Article	IF	CITATIONS
217	Development of an optimized protocol for studying the interaction of filamentous bacteriophage with mammalian cells by fluorescence microscopy. Microscopy Research and Technique, 2010, 73, 548-554.	2.2	6
218	Preparation and Characterization of Fe ₃ O ₄ /CdTe Magnetic/Fluorescent Nanocomposites and Their Applications in Immuno-Labeling and Fluorescent Imaging of Cancer Cells. Langmuir, 2010, 26, 1278-1284.	3.5	161
219	Nanofibrous Bioâ€inorganic Hybrid Structures Formed Through Selfâ€Assembly and Oriented Mineralization of Genetically Engineered Phage Nanofibers. Small, 2010, 6, 2230-2235.	10.0	76
220	Atomic Layer Deposition of Al ₂ O ₃ on Biological Pili Substrate. ECS Transactions, 2010, 33, 43-48.	0.5	6
221	Sensing humidity using virus-nanoparticle assembly. , 2010, , .		0
222	Architectonics of Phage-Liposome Nanowebs as Optimized Photosensitizer Vehicles for Photodynamic Cancer Therapy. Molecular Cancer Therapeutics, 2010, 9, 2524-2535.	4.1	37
223	Evolutionary Selection of New Breast Cancer Cell-Targeting Peptides and Phages with the Cell-Targeting Peptides Fully Displayed on the Major Coat and Their Effects on Actin Dynamics during Cell Internalization. Molecular Pharmaceutics, 2010, 7, 1629-1642.	4.6	58
224	Evolutionary Selection of New Breast Cancer Cell-Targeting Peptides and Phages with the Cell-Targeting Peptides Fully Displayed on the Major Coat and Their Effects on Actin Dynamics during Cell Internalization. Molecular Pharmaceutics, 2010, 7, 2369-2369.	4.6	6
225	Biomimetic Branched Hollow Fibers Templated by Self-Assembled Fibrous Polyvinylpyrrolidone Structures in Aqueous Solution. ACS Nano, 2010, 4, 1573-1579.	14.6	80
226	Oil Phase Evaporation-Induced Self-Assembly of Hydrophobic Nanoparticles into Spherical Clusters with Controlled Surface Chemistry in an Oil-in-Water Dispersion and Comparison of Behaviors of Individual and Clustered Iron Oxide Nanoparticles. Journal of the American Chemical Society, 2010, 132, 17724-17732.	13.7	146
227	Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale, 2010, 2, 1141.	5.6	157
228	Bacteriophage Bundles with Prealigned Ca ²⁺ Initiate the Oriented Nucleation and Growth of Hydroxylapatite. Chemistry of Materials, 2010, 22, 3630-3636.	6.7	80
229	Nanocomposite Films Assembled from Genetically Engineered Filamentous Viruses and Gold Nanoparticles: Nanoarchitecture―and Humidityâ€₹unable Surface Plasmon Resonance Spectra. Advanced Materials, 2009, 21, 1001-1005.	21.0	69
230	Virusâ€Based Chemical and Biological Sensing. Angewandte Chemie - International Edition, 2009, 48, 6790-6810.	13.8	243
231	Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires. Journal of Nanoparticle Research, 2009, 11, 885-894.	1.9	18
232	Selfâ€Assembly of Drugâ€Loaded Liposomes on Genetically Engineered Targetâ€Recognizing M13 Phage: A Novel Nanocarrier for Targeted Drug Delivery. Small, 2009, 5, 1963-1969.	10.0	70
233	Immunolabeling and NIR-Excited Fluorescent Imaging of HeLa Cells by Using NaYF ₄ :Yb,Er Upconversion Nanoparticles. ACS Nano, 2009, 3, 1580-1586.	14.6	533
234	Identification of Microtubule-Binding Domains on Microtubule-Associated Proteins by Major Coat Phage Display Technique. Biomacromolecules, 2009, 10, 555-564.	5.4	40

#	Article	IF	Citations
235	NIR-Responsive Silica-Coated NaYbF ₄ :Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells. Journal of Physical Chemistry C, 2009, 113, 19021-19027.	3.1	176
236	Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors. Chemical Communications, 2009, , 1222.	4.1	18
237	Self-assembly of drug-loaded liposomes on genetically engineered protein nanotubes: a potential anti-cancer drug delivery vector. Soft Matter, 2009, 5, 954.	2.7	26
238	Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF ₄ :Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles. Analytical Chemistry, 2009, 81, 8783-8789.	6.5	227
239	Genetically Modifiable Flagella as Templates for Silica Fibers: From Hybrid Nanotubes to 1D Periodic Nanohole Arrays. Advanced Functional Materials, 2008, 18, 4007-4013.	14.9	40
240	Oriented Nucleation of Hydroxylapatite Crystals on Spider Dragline Silks. Langmuir, 2007, 23, 10701-10705.	3.5	64
241	Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication. IEEE Transactions on Electron Devices, 2007, 54, 433-438.	3.0	45
242	Bio-Nano Approaches to Fabrication of Quantum Dot Floating Gate Flash Memories., 2007,,.		0
243	SiC Nanocrystal Flash Memory Fabricated with Protein-mediated Assembly. , 2006, , .		1
244	Nanomaterials characterization: Structures, compositions, and properties. Microscopy Research and Technique, 2006, 69, 519-521.	2.2	0
245	Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science, 2004, 303, 213-217.	12.6	946
246	Introduction: Nanomaterials characterization using microscopy. Microscopy Research and Technique, 2004, 64, 345-346.	2.2	2
247	Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chemistry and Biology, 2004, 11, 1553-1559.	6.0	415
248	Biological Routes to Metal Alloy Ferromagnetic Nanostructures. Nano Letters, 2004, 4, 1127-1132.	9.1	212
249	Building Quantum Dots into Solids with Well-Defined Shapes. Advanced Functional Materials, 2003, 13, 648-656.	14.9	13
250	Synthesis and organization of nanoscale Il–VI semiconductor materials using evolved peptide specificity and viral capsid assembly. Journal of Materials Chemistry, 2003, 13, 2414-2421.	6.7	174
251	Optical anisotropy in individual CdS quantum dot ensembles. Physical Review B, 2003, 68, .	3.2	11
252	Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6946-6951.	7.1	468

#	Article	IF	CITATIONS
253	Ordering of Quantum Dots Using Genetically Engineered Viruses. Science, 2002, 296, 892-895.	12.6	975
254	Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres. Applied Surface Science, 2000, 168, 251-257.	6.1	47
255	Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. Journal of Crystal Growth, 1999, 206, 308-321.	1.5	60
256	The functionalization of titanium with EDTA to induce biomimetic mineralization of hydroxyapatite. Journal of Materials Chemistry, 1999, 9, 2573-2582.	6.7	47
257	Biomimetic Growth of Calcium Phosphates with an Organized Hydroxylated Surface as Template. Journal of Materials Science Letters, 1998, 17, 1341-1343.	0.5	3
258	Biomimetic Growth of Calcium Phosphates with an Organized Hydroxylated Surface as Template. Journal of Materials Science Letters, 1998, 17, 1479-1481.	0.5	7
259	Rapid one-powder process to synthesize phase assemblage composed of (Bi,Pb)2Sr2CaCu2Ox, Ca2CuO3 and CuO. Physica C: Superconductivity and Its Applications, 1998, 303, 28-32.	1.2	4
260	Oriented growth of hydroxyapatite on (0001) textured titanium with functionalized self-assembled silane monolayer as template. Journal of Materials Chemistry, 1998, 8, 2795-2801.	6.7	44
261	Manufacture of ultrafine BiPbSrCaCuO powder by anin situnanometre reaction process. Superconductor Science and Technology, 1997, 10, 47-51.	3.5	2
262	Spectroscopic investigations of adsorption during fabrication of superconducting tape. Superconductor Science and Technology, 1997, 10, 241-248.	3 . 5	3
263	Optimization of a new modified wet-chemistry process for the synthesis of BPSCCO superconductor precursor powders with specific stoichiometr. Journal of Materials Chemistry, 1997, 7, 1451-1456.	6.7	0
264	Optimization of the solutionâ€"solâ€"gel process to synthesize homogeneous BiPbSrCaCuO powder. Physica C: Superconductivity and Its Applications, 1997, 281, 27-34.	1.2	4
265	Coprecipitation-based micro-reactor process to synthesize soft-agglomerated ultrafine BiPbSrCaCuO powder with low carbon content. Physica C: Superconductivity and Its Applications, 1997, 281, 35-44.	1.2	13
266	Interaction between BiPbSrCaCuO powder and ambient atmosphere. Physica C: Superconductivity and Its Applications, 1997, 281, 149-158.	1.2	3
267	New understanding of silver-induced texture in powder-in-tube processed Ag/Bi(2223) tape. Physica C: Superconductivity and Its Applications, 1997, 281, 159-175.	1.2	12
268	The combination of the polymeric solution - sol - gel process and combustion synthesis to manufacture BiPbSrCaCuO powder. Superconductor Science and Technology, 1996, 9, 994-1000.	3.5	11
269	The effect of the configuration of the silver layer on texture growth and microstructure in silver-sheathed superconducting tape. Superconductor Science and Technology, 1996, 9, 1001-1008.	3 . 5	1
270	Nanocrystal flash memory fabricated with protein-mediated assembly., 0,,.		4

#	Article	IF	CITATIONS
271	Soil is a key factor influencing gut microbiota and its effect is comparable to that exerted by diet for mice. F1000Research, 0, 7, 1588.	1.6	20
272	Stem Cell: Peptide and Protein-Modified Surfaces for Cell Niche. , 0, , 7565-7576.		0