
Chandrashekhar Pasare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effector memory CD4 T cells induce damaging innate inflammation and autoimmune pathology by engaging CD40 and TNFR on myeloid cells Science Immunology, 2022, 7, eabk0182.	5.6	7
2	IRF1 governs the differential interferon-stimulated gene responses in human monocytes and macrophages by regulating chromatin accessibility. Cell Reports, 2021, 34, 108891.	2.9	46
3	Environmental allergens trigger type 2 inflammation through ripoptosome activation. Nature Immunology, 2021, 22, 1316-1326.	7.0	43
4	Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information. Current Opinion in Immunology, 2021, 73, 25-33.	2.4	10
5	T cells instruct myeloid cells to produce inflammasome-independent IL-1β and cause autoimmunity. Nature Immunology, 2020, 21, 65-74.	7.0	61
6	Hypersensitivity of <scp><i>Vps33B</i></scp> mutant flies to nonâ€pathogenic infections is dictated by aberrant activation of p38b <scp>MAP</scp> kinase. Traffic, 2020, 21, 578-589.	1.3	0
7	Deep sequencing reveals a DAP1 regulatory haplotype that potentiates autoimmunity in systemic lupus erythematosus. Genome Biology, 2020, 21, 281.	3.8	8
8	Transcriptional profiling identifies caspase-1 as a T cell–intrinsic regulator of Th17 differentiation. Journal of Experimental Medicine, 2020, 217, .	4.2	15
9	Suppression of Inflammasome Activation by IRF8 and IRF4 in cDCs Is Critical for T Cell Priming. Cell Reports, 2020, 31, 107604.	2.9	40
10	Allergen-Induced C5a/C5aR1 Axis Activation in Pulmonary CD11b+ cDCs Promotes Pulmonary Tolerance through Downregulation of CD40. Cells, 2020, 9, 300.	1.8	12
11	IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth. Journal of Immunology, 2020, 204, 2651-2660.	0.4	12
12	TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30628-30638.	3.3	129
13	An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. Npj Vaccines, 2019, 4, 34.	2.9	36
14	MyD88 Signaling in T Cells Is Critical for Effector CD4 T Cell Differentiation following a Transitional T Follicular Helper Cell Stage. Infection and Immunity, 2018, 86, .	1.0	7
15	Regulation of contact sensitivity in nonâ€obese diabetic (NOD) mice by innate immunity. Contact Dermatitis, 2018, 79, 197-207.	0.8	2
16	T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nature Communications, 2018, 9, 3185.	5.8	94
17	BCAP links IL-1R to the PI3K–mTOR pathway and regulates pathogenic Th17 cell differentiation. Journal of Experimental Medicine, 2018, 215, 2413-2428.	4.2	46
18	Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. Journal of Immunology, 2017, 198, 3791-3800.	0.4	145

#	Article	IF	CITATIONS
19	Inhibition of IRAK1 Ubiquitination Determines Glucocorticoid Sensitivity for TLR9-Induced Inflammation in Macrophages. Journal of Immunology, 2017, 199, 3654-3667.	0.4	21
20	Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. ELife, 2016, 5, .	2.8	113
21	ARC Syndrome-Linked Vps33B Protein Is Required for Inflammatory Endosomal Maturation and Signal Termination. Immunity, 2016, 45, 267-279.	6.6	36
22	Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Science Signaling, 2016, 9, ra3.	1.6	66
23	Differential outcome of TRIF-mediated signaling in TLR4 and TLR3 induced DC maturation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13994-13999.	3.3	55
24	The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense. Cell Reports, 2015, 13, 1922-1936.	2.9	101
25	Enhancement of anti-tumor CD8 immunity by IgG1-mediated targeting of Fc receptors. MAbs, 2014, 6, 108-118.	2.6	5
26	Differential Ability of Surface and Endosomal TLRs To Induce CD8 T Cell Responses In Vivo. Journal of Immunology, 2014, 192, 4303-4315.	0.4	48
27	IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 775-780.	3.3	225
28	Location, location, location: tissue-specific regulation of immune responses. Journal of Leukocyte Biology, 2013, 94, 409-421.	1.5	74
29	Role for B-cell adapter for PI3K (BCAP) as a signaling adapter linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 273-278.	3.3	148
30	Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle, 2012, 11, 3559-3567.	1.3	177
31	Priming Microenvironments Dictate Cytokine Requirements for T Helper 17 Cell Lineage Commitment. Immunity, 2011, 35, 1010-1022.	6.6	93
32	Toll-Like Receptors: Linking Innate and Adaptive Immunity. , 2005, 560, 11-18.		453
33	Control of B-cell responses by Toll-like receptors. Nature, 2005, 438, 364-368.	13.7	673
34	Toll-like receptors: linking innate and adaptive immunity. Microbes and Infection, 2004, 6, 1382-1387.	1.0	395
35	Toll-like receptors and acquired immunity. Seminars in Immunology, 2004, 16, 23-26.	2.7	182
36	Toll-Dependent Control Mechanisms of CD4 T Cell Activation. Immunity, 2004, 21, 733-741.	6.6	345

#	Article	IF	CITATIONS
37	Toll Pathway-Dependent Blockade of CD4+CD25+ T Cell-Mediated Suppression by Dendritic Cells. Science, 2003, 299, 1033-1036.	6.0	1,935
38	Toll-like receptors: balancing host resistance with immune tolerance. Current Opinion in Immunology, 2003, 15, 677-682.	2.4	141
39	Toll-Like Receptors and Control of Adaptive Immunity. , 0, , 271-285.		1