Jianwei Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/629161/publications.pdf

Version: 2024-02-01

117571 345118 9,370 37 34 36 h-index citations g-index papers 37 37 37 8629 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554, 224-228.	13.7	970
2	A radiative cooling structural material. Science, 2019, 364, 760-763.	6.0	856
3	Plasmonic Wood for Highâ€Efficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8, 1701028.	10.2	701
4	All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy and Environmental Science, 2017, 10, 538-545.	15.6	602
5	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.	11.1	584
6	Highly Anisotropic, Highly Transparent Wood Composites. Advanced Materials, 2016, 28, 5181-5187.	11.1	518
7	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	11.1	511
8	High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3584-3589.	3.3	412
9	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	7.3	364
10	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	13.3	343
11	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
12	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	10.2	255
13	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122.	10.2	228
14	Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. Advanced Energy Materials, 2017, 7, 1700595.	10.2	210
15	Lignin as a Woodâ€Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Advanced Functional Materials, 2020, 30, 1906307.	7.8	208
16	Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. Advanced Materials, 2017, 29, 1606284.	11.1	202
17	Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1802398.	10.2	163
18	Hierarchically Porous, Ultrathick, "Breathable―Woodâ€Đerived Cathode for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1701203.	10.2	161

#	Article	IF	Citations
19	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	7.3	151
20	Transient, <i>in situ</i> synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO ₂ battery. Energy and Environmental Science, 2019, 12, 1100-1107.	15.6	129
21	Dense, Selfâ€Formed Char Layer Enables a Fireâ€Retardant Wood Structural Material. Advanced Functional Materials, 2019, 29, 1807444.	7.8	125
22	From Wood to Textiles: Topâ€Down Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018, 30, e1801347.	11.1	121
23	Natureâ€Inspired Triâ€Pathway Design Enabling Highâ€Performance Flexible Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802964.	10.2	121
24	Flexible lithium–CO ₂ battery with ultrahigh capacity and stable cycling. Energy and Environmental Science, 2018, 11, 3231-3237.	15.6	117
25	Conductive Wood for High-Performance Structural Electromagnetic Interference Shielding. Chemistry of Materials, 2020, 32, 5280-5289.	3.2	117
26	Bioinspired Solarâ∈Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. Advanced Functional Materials, 2019, 29, 1900162.	7.8	116
27	Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity. ACS Nano, 2020, 14, 16723-16734.	7.3	98
28	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	4.6	97
29	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.	11.1	80
30	Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28566-28571.	4.0	79
31	In Situ "Chainmail Catalyst―Assembly in Lowâ€Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.	10.2	79
32	All Natural, High Efficient Groundwater Extraction via Solar Steam/Vapor Generation. Advanced Sustainable Systems, 2019, 3, 1800055.	2.7	78
33	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood., 2019, 1, 354-361.		72
34	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. Chemistry of Materials, 2020, 32, 1887-1895.	3.2	65
35	An Energyâ€Efficient, Woodâ€Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. Small Methods, 2020, 4, 1900747.	4.6	53
36	In Situ, Fast, High‶emperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. Advanced Energy Materials, 2017, 7, 1601783.	10.2	27

#	Article	IF	CITATIONS
37	Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material ^{â€} . Chinese Journal of Chemistry, 2020, 38, 823-829.	2.6	21