Julien P Puyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291064/publications.pdf Version: 2024-02-01

ΙΠΠΕΝ Ο ΟΠΛΛΙ

#	Article	IF	CITATIONS
1	Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy, 2022, 18, 1297-1317.	9.1	14
2	Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1650-1665.	4.3	19
3	Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. ELife, 2021, 10, .	6.0	31
4	Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Science Advances, 2020, 6, eaba8271.	10.3	47
5	Interaction between the autophagy protein Beclin 1 and Na+,K+-ATPase during starvation, exercise, and ischemia. JCI Insight, 2020, 5, .	5.0	37
6	Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Frontiers in Cell and Developmental Biology, 2020, 8, 27.	3.7	26
7	CDK4 Regulates Lysosomal Function and mTORC1 Activation to Promote Cancer Cell Survival. Cancer Research, 2019, 79, 5245-5259.	0.9	35
8	The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of G _α and G _{βγ} Subunits. Journal of Neuroscience, 2019, 39, 4422-4433.	3.6	101
9	Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury. Cell Death and Disease, 2018, 9, 853.	6.3	24
10	Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cerebral Cortex, 2017, 27, 2365-2384.	2.9	37
11	Inhibition of autophagy delays motoneuron degeneration and extends lifespan in a mouse model of spinal muscular atrophy. Cell Death and Disease, 2017, 8, 3223.	6.3	37
12	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
13	Neuroprotection by selective neuronal deletion of <i>Atg7</i> in neonatal brain injury. Autophagy, 2016, 12, 410-423.	9.1	140
14	The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget, 2016, 7, 64342-64359.	1.8	21
15	Neuronal death after perinatal cerebral hypoxiaâ€ischemia: Focus on autophagy—mediated cell death. International Journal of Developmental Neuroscience, 2015, 45, 75-85.	1.6	71
16	Combinative effects of \hat{l}^2 -Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Biochimie, 2015, 116, 141-153.	2.6	14
17	Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy, 2014, 10, 1827-1843.	9.1	70
18	Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy, 2014, 10, 846-860.	9.1	130

JULIEN P PUYAL

#	Article	IF	CITATIONS
19	Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Annals of Neurology, 2014, 76, 695-711.	5.3	41
20	A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis. Autophagy, 2014, 10, 603-617.	9.1	28
21	Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO Journal, 2014, 33, 2388-2407.	7.8	84
22	Inflammation-Induced Alteration of Astrocyte Mitochondrial Dynamics Requires Autophagy for Mitochondrial Network Maintenance. Cell Metabolism, 2013, 18, 844-859.	16.2	201
23	HDLs protect the MIN6 insulinoma cell line against tunicamycin-induced apoptosis without inhibiting ER stress and without restoring ER functionality. Molecular and Cellular Endocrinology, 2013, 381, 291-301.	3.2	17
24	Storage and Uptake of d-Serine into Astrocytic Synaptic-Like Vesicles Specify Gliotransmission. Journal of Neuroscience, 2013, 33, 3413-3423.	3.6	148
25	Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: A challenge for neuroprotection. Progress in Neurobiology, 2013, 105, 24-48.	5.7	181
26	The nNOS-p38MAPK Pathway Is Mediated by NOS1AP during Neuronal Death. Journal of Neuroscience, 2013, 33, 8185-8201.	3.6	80
27	Autosis is a Na ⁺ ,K ⁺ -ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20364-20371.	7.1	470
28	Lactate Modulates the Activity of Primary Cortical Neurons through a Receptor-Mediated Pathway. PLoS ONE, 2013, 8, e71721.	2.5	159
29	Autophagy Defect Is Associated with Low Glucose-Induced Apoptosis in 661W Photoreceptor Cells. PLoS ONE, 2013, 8, e74162.	2.5	31
30	HDLs Protect Pancreatic β-Cells Against ER Stress by Restoring Protein Folding and Trafficking. Diabetes, 2012, 61, 1100-1111.	0.6	63
31	Autophagic cell death exists. Autophagy, 2012, 8, 867-869.	9.1	106
32	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
33	Neuronal Autophagy as a Mediator of Life and Death. Neuroscientist, 2012, 18, 224-236.	3.5	72
34	Excitotoxicityâ€induced endocytosis mediates neuroprotection by TATâ€peptideâ€linked JNK inhibitor. Journal of Neurochemistry, 2011, 119, 1243-1252.	3.9	17
35	Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy, 2011, 7, 1115-1131.	9.1	154
36	Calpain Hydrolysis of α- and β2-Adaptins Decreases Clathrin-dependent Endocytosis and May Promote Neurodegeneration. Journal of Biological Chemistry, 2009, 284, 12447-12458.	3.4	38

JULIEN P PUYAL

#	Article	IF	CITATIONS
37	Excitotoxicityâ€induced endocytosis confers drug targeting in cerebral ischemia. Annals of Neurology, 2009, 65, 337-347.	5.3	23
38	Postischemic treatment of neonatal cerebral ischemia should target autophagy. Annals of Neurology, 2009, 66, 378-389.	5.3	244
39	JNK3 is abundant in insulin-secreting cells and protects against cytokine-induced apoptosis. Diabetologia, 2009, 52, 1871-1880.	6.3	42
40	Limited role of the câ€Jun Nâ€ŧerminal kinase pathway in a neonatal rat model of cerebral hypoxia–ischemia. Journal of Neurochemistry, 2009, 108, 552-562.	3.9	28
41	Targeting autophagy to prevent neonatal stroke damage. Autophagy, 2009, 5, 1060-1061.	9.1	78
42	Enhancement of Autophagic Flux after Neonatal Cerebral Hypoxia-Ischemia and Its Region-Specific Relationship to Apoptotic Mechanisms. American Journal of Pathology, 2009, 175, 1962-1974.	3.8	133
43	Excitotoxicity-related endocytosis in cortical neurons. Journal of Neurochemistry, 2007, 102, 789-800.	3.9	28
44	Changes inD-serine levels and localization during postnatal development of the rat vestibular nuclei. Journal of Comparative Neurology, 2006, 497, 610-621.	1.6	43
45	Immunocytochemical and pharmacological characterization of metabotropic glutamate receptors of the vestibular end organs in the frog. Hearing Research, 2005, 204, 200-209.	2.0	10
46	Endocytosis and autophagy in cerebral ischemia and excitotoxicity. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S461-S461.	4.3	1
47	Developmental shift from longâ€ŧerm depression to longâ€ŧerm potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors. Journal of Physiology, 2003, 553, 427-443.	2.9	35
48	Expression of Glutamate Transporters in the Medial and Lateral Vestibular Nuclei during Rat Postnatal Development. Developmental Neuroscience, 2003, 25, 332-342.	2.0	3
49	Calcium-binding proteins map the postnatal development of rat vestibular nuclei and their vestibular and cerebellar projections. Journal of Comparative Neurology, 2002, 451, 374-391.	1.6	18
50	Distribution of α-amino-3-hydroxy-5-methyl-4 isoazolepropionic acid and N-methyl-d-aspartate receptor subunits in the vestibular and spiral ganglia of the mouse during early development. Developmental Brain Research, 2002, 139, 51-57.	1.7	16