
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6289877/publications.pdf Version: 2024-02-01

CODALIND

#	Article	IF	CITATIONS
1	Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 2004, 126, 4043-4049.	13.7	485
2	Two Decades of Negative Thermal Expansion Research: Where Do We Stand?. Materials, 2012, 5, 1125-1154.	2.9	281
3	Synthesis and Properties of the Negative Thermal Expansion Material Cubic ZrMo2O8. Chemistry of Materials, 1998, 10, 2335-2337.	6.7	177
4	Electrocatalytic Oxidation of Formic Acid at an Ordered Intermetallic PtBi Surface. ChemPhysChem, 2003, 4, 193-199.	2.1	174
5	The Materials Genome Initiative, the interplay of experiment, theory and computation. Current Opinion in Solid State and Materials Science, 2014, 18, 99-117.	11.5	160
6	The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone, 2006, 39, 1236-1243.	2.9	134
7	Surface Treatment Effects on the Electrocatalytic Activity and Characterization of Intermetallic Phases. Journal of the Electrochemical Society, 2004, 151, A971.	2.9	79
8	New High-Pressure Form of the Negative Thermal Expansion Materials Zirconium Molybdate and Hafnium Molybdate. Chemistry of Materials, 2001, 13, 487-490.	6.7	69
9	Preparation of the negative thermal expansion material cubic ZrMo2O8. Journal of Materials Chemistry, 2001, 11, 3354-3359.	6.7	65
10	Zirconium tungstate/polymer nanocomposites: Challenges and opportunities. Physica Status Solidi (B): Basic Research, 2011, 248, 123-129.	1.5	59
11	A New Polymorph of ZrW2O8 Prepared Using Nonhydrolytic Solâ^'Gel Chemistry. Chemistry of Materials, 1999, 11, 101-108.	6.7	53
12	Preparation, Transport Properties, and Structure Analysis by Resonant X-ray Scattering of the Type I Clathrate Cs8Cd4Sn42. Chemistry of Materials, 2002, 14, 1300-1305.	6.7	53
13	High pressure synchrotron x-ray powder diffraction study of Sc2Mo3O12and Al2W3O12. Journal of Physics Condensed Matter, 2005, 17, 4271-4283.	1.8	45
14	Negative thermal expansion in cubicZrMo2O8: Inelastic neutron scattering and lattice dynamical studies. Physical Review B, 2004, 70, .	3.2	41
15	Structural analysis of Sr8Ga16Ge30 clathrate compound. Journal of Applied Physics, 2000, 87, 1529-1533.	2.5	40
16	Pressure-induced amorphization of cubicZrW2O8studiedin situandex situby synchrotron x-ray diffraction and absorption. Physical Review B, 2005, 72, .	3.2	40
17	Polymorphism in yttrium molybdate Y2Mo3O12. Journal of Solid State Chemistry, 2007, 180, 3510-3514.	2.9	37
18	Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. Journal of Materials Research, 2008, 23, 210-213.	2.6	37

#	Article	IF	CITATIONS
19	Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond. Materials, 2010, 3, 2567-2587.	2.9	36
20	X-ray Diffraction and X-ray Absorption Spectroscopy Studies of Solâ^'Gel-Processed Zirconium Titanates. Chemistry of Materials, 2000, 12, 3347-3355.	6.7	35
21	Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from K. Journal of Chemical Thermodynamics, 2003, 35, 919-937.	2.0	35
22	Particle size and morphology control of the negative thermal expansion material cubic zirconium tungstate. Journal of Materials Chemistry, 2009, 19, 2760.	6.7	33
23	Autohydration of Nanosized Cubic Zirconium Tungstate. Journal of the American Chemical Society, 2010, 132, 8278-8279.	13.7	31
24	Thermal Expansion Behavior in the A2M3O12 Family of Materials. Solids, 2021, 2, 87-107.	2.4	31
25	In situhigh-pressure synchrotron x-ray diffraction study ofSc2W3O12at up to 10 GPa. Physical Review B, 2005, 71, .	3.2	28
26	Heats of Formation for Several Crystalline Polymorphs and Pressure-Induced Amorphous Forms of AMo2O8(A = Zr, Hf) and ZrW2O8. Chemistry of Materials, 2007, 19, 468-476.	6.7	28
27	Seeding and the Non-Hydrolytic Sol-Gel Synthesis of ZrW2O8 and ZrMo2O8. Journal of Sol-Gel Science and Technology, 2002, 25, 51-56.	2.4	27
28	Synthesis, Thermal and X-Ray Investigations of the High-Temperature Phase of Copper(I) Cyanide. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2003, 58, 155-158.	0.7	26
29	Reactions of alkaline earth metals and nitrogen in sealed niobium ampoules: the formation of MgZn2 type intermetallic phases in the presence of nitrogen and the new compound Ba5[NbN4]N. Journal of Alloys and Compounds, 2004, 384, 98-105.	5.5	25
30	Non-hydrolytic sol–gel synthesis, properties, and high-pressure behavior of gallium molybdate. Journal of Materials Chemistry, 2006, 16, 4214-4219.	6.7	25
31	Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method. Journal of Sol-Gel Science and Technology, 2008, 47, 128-130.	2.4	25
32	Preparation and properties of polyimide nanocomposites with negative thermal expansion nanoparticle filler. Materials Chemistry and Physics, 2012, 137, 448-457.	4.0	22
33	Facile Synthesis of Troilite. Inorganic Chemistry, 2008, 47, 392-394.	4.0	21
34	Phase selective synthesis of copper sulfides by non-hydrolytic sol–gel methods. RSC Advances, 2014, 4, 717-726.	3.6	21
35	Kinetics of the cubic to trigonal transformation in ZrMo2O8 and their dependence on precursor chemistry. Journal of Materials Chemistry, 2002, 12, 990-994.	6.7	20
36	Zirconium tungstate hydroxide hydrate revisited: Crystallization dependence on halide and hydronium ions. Journal of Solid State Chemistry, 2007, 180, 3504-3509.	2.9	18

#	Article	IF	CITATIONS
37	Low Temperature Synthesis and Characterization of AlScMo3O12. Materials, 2015, 8, 700-716.	2.9	18
38	<i>In situ</i> high-pressure synchrotron x-ray diffraction study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 		

#	Article	IF	CITATIONS
55	Abnormal Oxidation of TiSi ₂ in Gate Stacks Found at 750–850°C. MRS Bulletin, 2000, 25, 10-10.	3.5	1
56	Mapping the Distribution of Corrosion Products in Cement Exposed to Sulfate using Energy Dispersive X-ray Diffraction. Materials Research Society Symposia Proceedings, 2001, 678, 531.	0.1	1
57	2007 American Crystallographic Association Annual Meeting. Powder Diffraction, 2007, 22, 358-359.	0.2	1
58	Inviting others to life in reciprocal space. Structural Dynamics, 2021, 8, 020403.	2.3	1
59	Raman Spectroscopy Detects Carotenoid Levels in Human Retina. MRS Bulletin, 2001, 26, 278-279.	3.5	0
60	Generalized Titanate Ceramic Waste Form Developed for Processing Radioactive Waste with Various Compositions. MRS Bulletin, 2001, 26, 597-601.	3.5	0
61	Synthesis, Thermal and X-Ray Investigations of the High-Temperature Phase of Copper(I) Cyanide ChemInform, 2003, 34, no.	0.0	0
62	An Addition to the Oxoacid Family: H2B12(OH)12 ChemInform, 2004, 35, no.	0.0	0
63	Reactions of Alkaline Earth Metals and Nitrogen in Sealed Niobium Ampules: The Formation of MgZn2 Type Intermetallic Phases in the Presence of Nitrogen and the New Compound Ba5[NbN4]N ChemInform, 2005, 36, no.	0.0	0
64	One-pot in situ synthesis of poly(3-hexylthiophene)/vanadium oxide composites. Polymer Bulletin, 0, , 1.	3.3	0
65	DISORDER IN CLATHRATE THERMOELECTRICS. , 2001, , .		0
66	Suppression of phase-transition temperature in aluminium indium tungstate and aluminium indium molybdate. Journal of Applied Crystallography, 2022, 55, 851-859.	4.5	0