
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6288714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706-710.	27.8	9,624
2	Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5, 574-578.	31.5	7,294
3	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
4	Stretchable and Foldable Silicon Integrated Circuits. Science, 2008, 320, 507-511.	12.6	1,474
5	Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012, 6, 105-110.	31.4	1,272
6	Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters, 2010, 10, 490-493.	9.1	1,062
7	Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Nano, 2011, 5, 4670-4678.	14.6	819
8	Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotechnology, 2010, 5, 853-857.	31.5	771
9	Highâ€Performance Perovskite–Graphene Hybrid Photodetector. Advanced Materials, 2015, 27, 41-46.	21.0	753
10	Graphene-based transparent strain sensor. Carbon, 2013, 51, 236-242.	10.3	711
11	Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials. Science, 2006, 314, 1754-1757.	12.6	632
12	Grapheneâ€Based Flexible and Stretchable Electronics. Advanced Materials, 2016, 28, 4184-4202.	21.0	537
13	Chemical Vapor Deposition-Grown Graphene: The Thinnest Solid Lubricant. ACS Nano, 2011, 5, 5107-5114.	14.6	462
14	High-Performance Graphene-Based Transparent Flexible Heaters. Nano Letters, 2011, 11, 5154-5158.	9.1	457
15	Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Advanced Functional Materials, 2008, 18, 2673-2684.	14.9	398
16	High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2010, 10, 3464-3466.	9.1	390
17	Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Letters, 2011, 11, 4642-4646.	9.1	351
18	MoS ₂ â€Based Tactile Sensor for Electronic Skin Applications. Advanced Materials, 2016, 28, 2556-2562.	21.0	351

2

#	Article	IF	CITATIONS
19	Semiconductor Wires and Ribbons for High―Performance Flexible Electronics. Angewandte Chemie - International Edition, 2008, 47, 5524-5542.	13.8	279
20	Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics. ACS Nano, 2017, 11, 7950-7957.	14.6	270
21	All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters, 2012, 12, 3472-3476.	9.1	225
22	Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications. ACS Nano, 2013, 7, 3130-3138.	14.6	220
23	Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362, 665-670.	12.6	208
24	Bioinspired in-sensor visual adaptation for accurate perception. Nature Electronics, 2022, 5, 84-91.	26.0	204
25	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nature Communications, 2018, 9, 1417.	12.8	189
26	Giant spin Hall effect in graphene grown by chemical vapour deposition. Nature Communications, 2014, 5, 4748.	12.8	179
27	All MoS ₂ -Based Large Area, Skin-Attachable Active-Matrix Tactile Sensor. ACS Nano, 2019, 13, 3023-3030.	14.6	171
28	Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale, 2014, 6, 2821.	5.6	166
29	Flexible active-matrix organic light-emitting diode display enabled by MoS ₂ thin-film transistor. Science Advances, 2018, 4, eaas8721.	10.3	163
30	Graphene-Based Bimorph Microactuators. Nano Letters, 2011, 11, 977-981.	9.1	159
31	Graphenes Converted from Polymers. Journal of Physical Chemistry Letters, 2011, 2, 493-497.	4.6	158
32	Bendable GaN high electron mobility transistors on plastic substrates. Journal of Applied Physics, 2006, 100, 124507.	2.5	157
33	A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy and Environmental Science, 2012, 5, 8970.	30.8	157
34	CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nature Communications, 2018, 9, 1690.	12.8	155
35	High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Letters, 2006, 27, 460-462.	3.9	154
36	Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy, 2016, 27, 298-305.	16.0	152

#	Article	IF	CITATIONS
37	Selfâ€Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying. Advanced Functional Materials, 2014, 24, 4986-4995.	14.9	151
38	Graphene for displays that bend. Nature Nanotechnology, 2014, 9, 737-738.	31.5	150
39	Stretchable electronics: materials, architectures and integrations. Journal Physics D: Applied Physics, 2012, 45, 103001.	2.8	145
40	A graphene-based transparent electrode for use in flexible optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 2646-2656.	5.5	145
41	Selfâ€Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. Advanced Materials, 2016, 28, 7149-7154.	21.0	141
42	Effect of PEDOT Nanofibril Networks on the Conductivity, Flexibility, and Coatability of PEDOT:PSS Films. ACS Applied Materials & Interfaces, 2014, 6, 6954-6961.	8.0	140
43	Graphene for flexible and wearable device applications. Carbon, 2017, 120, 244-257.	10.3	137
44	Graphene-based flexible and stretchable thin film transistors. Nanoscale, 2012, 4, 4870.	5.6	135
45	Stretchable, Transparent Zinc Oxide Thin Film Transistors. Advanced Functional Materials, 2010, 20, 3577-3582.	14.9	133
46	Flexible and Platinumâ€Free Dyeâ€Sensitized Solar Cells with Conductingâ€Polymerâ€Coated Graphene Counter Electrodes. ChemSusChem, 2012, 5, 379-382.	6.8	133
47	Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Materials Today, 2015, 18, 336-344.	14.2	133
48	Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy, 2019, 62, 259-267.	16.0	132
49	Towards industrial applications of graphene electrodes. Physica Scripta, 2012, T146, 014024.	2.5	131
50	Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport. ACS Nano, 2012, 6, 1158-1164.	14.6	129
51	Stretchable Active Matrix Inorganic Lightâ€Emitting Diode Display Enabled by Overlayâ€Aligned Rollâ€Transfer Printing. Advanced Functional Materials, 2017, 27, 1606005.	14.9	124
52	2 μm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 2013, 102, 013113.	3.3	120
53	Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters, 2016, 16, 334-340.	9.1	117
54	Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. Chemistry of Materials, 2016, 28, 180-187.	6.7	112

#	Article	IF	CITATIONS
55	Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Optics Express, 2013, 21, 31548.	3.4	111
56	Coplanar-Gate Transparent Graphene Transistors and Inverters on Plastic. ACS Nano, 2012, 6, 8646-8651.	14.6	110
57	Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nature Nanotechnology, 2022, 17, 500-506.	31.5	104
58	Supramolecular barrels from amphiphilic rigid–flexible macrocycles. Nature Materials, 2005, 4, 399-402.	27.5	101
59	Graphene induced tunability of the surface plasmon resonance. Applied Physics Letters, 2012, 100, .	3.3	97
60	Local Strain Induced Band Gap Modulation and Photoluminescence Enhancement of Multilayer Transition Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 5124-5133.	6.7	97
61	Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano, 2015, 9, 5818-5824.	14.6	93
62	Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Applied Physics Letters, 2009, 94, .	3.3	92
63	Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization. ACS Applied Materials & Interfaces, 2014, 6, 3299-3304.	8.0	91
64	Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS ₂ backplane. Science Advances, 2020, 6, eabb5898.	10.3	91
65	Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Materials, 2018, 10, e468-e468.	7.9	90
66	Tuning Optical Conductivity of Large‣cale CVD Graphene by Strain Engineering. Advanced Materials, 2014, 26, 1081-1086.	21.0	86
67	Graphene-Based Conformal Devices. ACS Nano, 2014, 8, 7655-7662.	14.6	86
68	Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon. IEEE Electron Device Letters, 2008, 29, 73-76.	3.9	85
69	Graphene based field effect transistors: Efforts made towards flexible electronics. Solid-State Electronics, 2013, 89, 177-188.	1.4	85
70	Graphene/liquid crystal based terahertz phase shifters. Optics Express, 2013, 21, 21395.	3.4	84
71	Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes. Chemistry of Materials, 2013, 25, 3535-3538.	6.7	83
72	Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25, 014012.	2.6	81

#	Article	IF	CITATIONS
73	Atomic layer etching of graphene for full graphene device fabrication. Carbon, 2012, 50, 429-435.	10.3	80
74	The mechanical responses of tilted and non-tilted grain boundaries in graphene. Carbon, 2012, 50, 3708-3716.	10.3	79
75	Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Applied Physics Letters, 2007, 90, 213501.	3.3	78
76	Loadâ€Controlled Roll Transfer of Oxide Transistors for Stretchable Electronics. Advanced Functional Materials, 2013, 23, 2024-2032.	14.9	78
77	Double-layer CVD graphene as stretchable transparent electrodes. Nanoscale, 2014, 6, 6057-6064.	5.6	77
78	Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons. Nature Communications, 2015, 6, 8814.	12.8	76
79	Graphene-based flexible and wearable electronics. Journal of Semiconductors, 2018, 39, 011007.	3.7	76
80	Wafer-scale graphene/ferroelectric hybrid devices for low-voltage electronics. Europhysics Letters, 2011, 93, 17002.	2.0	74
81	Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. Scientific Reports, 2016, 6, 18754.	3.3	74
82	Fracture Characteristics of Monolayer CVD-Graphene. Scientific Reports, 2014, 4, 4439.	3.3	73
83	Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology, 2010, 21, 425201.	2.6	70
84	Highly Sensitive, Gate-Tunable, Room-Temperature Mid-Infrared Photodetection Based on Graphene–Bi ₂ Se ₃ Heterostructure. ACS Photonics, 2017, 4, 482-488.	6.6	70
85	Stretchable Electroluminescent Display Enabled by Graphene-Based Hybrid Electrode. ACS Applied Materials & Interfaces, 2019, 11, 14222-14228.	8.0	69
86	Structure of Shear-Induced Perforated Layer Phase in Styreneâ^'Isoprene Diblock Copolymer Melts. Macromolecules, 2000, 33, 641-644.	4.8	68
87	Lithography-free plasma-induced patterned growth of MoS ₂ and its heterojunction with graphene. Nanoscale, 2016, 8, 15181-15188.	5.6	68
88	Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors. Carbon, 2015, 88, 165-172.	10.3	67
89	Recent Advances in Tactile Sensing Technology. Micromachines, 2018, 9, 321.	2.9	67
90	Surfaceâ€Functionalizationâ€Mediated Direct Transfer of Molybdenum Disulfide for Largeâ€Area Flexible Devices. Advanced Functional Materials, 2018, 28, 1706231.	14.9	66

#	Article	IF	CITATIONS
91	Graphene Films for Flexible Organic and Energy Storage Devices. Journal of Physical Chemistry Letters, 2013, 4, 831-841.	4.6	65
92	Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Scientific Reports, 2015, 5, 12326.	3.3	65
93	Flexible graphene–PZT ferroelectric nonvolatile memory. Nanotechnology, 2013, 24, 475202.	2.6	62
94	Detection of graphene domains and defects using liquid crystals. Nature Communications, 2014, 5, 3484.	12.8	62
95	Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano, 2012, 6, 2096-2103.	14.6	61
96	Flexible MgO Barrier Magnetic Tunnel Junctions. Advanced Materials, 2016, 28, 4983-4990.	21.0	59
97	Liquid-Crystalline Assembly from Rigid Wedge-Flexible Coil Diblock Molecules. Angewandte Chemie - International Edition, 2005, 44, 328-332.	13.8	57
98	Impact of 2D–3D Heterointerface on Remote Epitaxial Interaction through Graphene. ACS Nano, 2021, 15, 10587-10596.	14.6	57
99	Photo-patternable ion gel-gated graphene transistors and inverters on plastic. Nanotechnology, 2014, 25, 014002.	2.6	56
100	MoS ₂ /Graphene Photodetector Array with Strain-Modulated Photoresponse up to the Near-Infrared Regime. ACS Nano, 2021, 15, 12836-12846.	14.6	56
101	Approaching ultimate flexible organic light-emitting diodes using a graphene anode. NPG Asia Materials, 2016, 8, e303-e303.	7.9	55
102	Highly Conductive Freestanding Graphene Films as Anode Current Collectors for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 11158-11166.	8.0	54
103	Biomimetic Tactile Sensors Based on Nanomaterials. ACS Nano, 2020, 14, 1220-1226.	14.6	53
104	GRAPHENE-BASED TRANSPARENT CONDUCTIVE FILMS. Nano, 2013, 08, 1330001.	1.0	52
105	Atomicâ€Level Customization of 4 in. Transition Metal Dichalcogenide Multilayer Alloys for Industrial Applications. Advanced Materials, 2019, 31, e1901405.	21.0	52
106	2D Materials for Skinâ€Mountable Electronic Devices. Advanced Materials, 2021, 33, e2005858.	21.0	51
107	Quantum Confinement Effects in Transferrable Silicon Nanomembranes and Their Applications on Unusual Substrates. Nano Letters, 2013, 13, 5600-5607.	9.1	49
108	Three-Dimensional Writing of Highly Stretchable Organic Nanowires. ACS Macro Letters, 2012, 1, 375-379.	4.8	47

#	Article	IF	CITATIONS
109	Direct Synthesis of a Selfâ€Assembled WSe ₂ /MoS ₂ Heterostructure Array and its Optoelectrical Properties. Advanced Materials, 2019, 31, e1904194.	21.0	47
110	Additive-free thick graphene film as an anode material for flexible lithium-ion batteries. Nanoscale, 2015, 7, 7065-7071.	5.6	46
111	Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide. Small, 2016, 12, 5720-5727.	10.0	46
112	Onâ€Fabrication Solidâ€6tate Nâ€Doping of Graphene by an Electronâ€Transporting Metal Oxide Layer for Efficient Inverted Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600172.	19.5	46
113	High-quality Si_3N_4 circuits as a platform for graphene-based nanophotonic devices. Optics Express, 2013, 21, 31678.	3.4	45
114	A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon, 2017, 116, 553-561.	10.3	45
115	A 6.5- <i>μ</i> W 10-kHz BW 80.4-dB SNDR G _m -C-Based CT â^†â^ Modulator With a Feedback-Assisted G _m Linearization for Artifact-Tolerant Neural Recording. IEEE Journal of Solid-State Circuits, 2020, 55, 2889-2901.	5.4	45
116	Large-area synthesis of transition metal dichalcogenides <i>via</i> CVD and solution-based approaches and their device applications. Nanoscale, 2021, 13, 615-633.	5.6	44
117	Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Optics Express, 2012, 20, 19690.	3.4	43
118	Dynamic spin injection into chemical vapor deposited graphene. Applied Physics Letters, 2012, 101, .	3.3	43
119	Nucleation and Growth of the HfO ₂ Dielectric Layer for Graphene-Based Devices. Chemistry of Materials, 2015, 27, 5868-5877.	6.7	43
120	Flexible and Stretchable Oxide Electronics. Advanced Electronic Materials, 2016, 2, 1600105.	5.1	42
121	Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials, 2017, 4, 024002.	4.4	42
122	<pre>\$hbox{PbZr}_{x}hbox{Ti}_{1 - x}hbox{O}_{3}\$ Ferroelectric Thin-Film Capacitors for Flexible Nonvolatile Memory Applications. IEEE Electron Device Letters, 2010, 31, 1017-1019.</pre>	3.9	41
123	Controllable P―and Nâ€Type Conversion of MoTe ₂ via Oxide Interfacial Layer for Logic Circuits. Small, 2019, 15, e1901772.	10.0	41
124	Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors. NPG Asia Materials, 2019, 11, .	7.9	40
125	Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Applied Physics Letters, 2008, 93, 044102.	3.3	39
126	Monatomic Chemical-Vapor-Deposited Graphene Membranes Bridge a Half-Millimeter-Scale Gap. ACS Nano, 2014, 8, 2336-2344.	14.6	37

#	Article	IF	CITATIONS
127	Nanofabrication approaches for functional three-dimensional architectures. Nano Today, 2020, 30, 100825.	11.9	37
128	Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices. Scientific Reports, 2015, 5, 16710.	3.3	36
129	Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics. NPG Asia Materials, 2018, 10, 810-820.	7.9	36
130	Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Science Advances, 2020, 6, eabb0576.	10.3	36
131	Graphene-Based Heat Spreader for Flexible Electronic Devices. IEEE Transactions on Electron Devices, 2014, 61, 4171-4175.	3.0	35
132	Shape-Persistent Macromolecular Disks from Reactive Supramolecular Rod Bundles. Journal of the American Chemical Society, 2004, 126, 12208-12209.	13.7	34
133	Synthesis and applications of graphene electrodes. Carbon Letters, 2012, 13, 1-16.	5.9	33
134	Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. Applied Physics Letters, 2009, 95, .	3.3	32
135	Conductance modulation in topological insulator Bi2Se3 thin films with ionic liquid gating. Applied Physics Letters, 2013, 103, .	3.3	32
136	Efficient Direct Reduction of Graphene Oxide by Silicon Substrate. Scientific Reports, 2015, 5, 12306.	3.3	32
137	Biologically Plausible Artificial Synaptic Array: Replicating Ebbinghaus' Memory Curve with Selective Attention. Advanced Materials, 2021, 33, e2007782.	21.0	32
138	Influence of nonionic surfactant-modified PEDOT:PSS on graphene. Carbon, 2015, 85, 261-268.	10.3	31
139	Thermal stability of metal Ohmic contacts in indium gallium zinc oxide transistors using a graphene barrier layer. Applied Physics Letters, 2013, 102, .	3.3	30
140	Dryingâ€Mediated Selfâ€Assembled Growth of Transition Metal Dichalcogenide Wires and their Heterostructures. Advanced Materials, 2015, 27, 4142-4149.	21.0	30
141	Electronic Structure of Nonionic Surfactant-Modified PEDOT:PSS and Its Application in Perovskite Solar Cells with Reduced Interface Recombination. ACS Applied Materials & Interfaces, 2019, 11, 17028-17034.	8.0	30
142	Biodegradable and bioabsorbable sensors based on two-dimensional materials. Journal of Materials Chemistry B, 2020, 8, 1082-1092.	5.8	30
143	Rational design of high-performance wearable tactile sensors utilizing bioinspired structures/functions, natural biopolymers, and biomimetic strategies. Materials Science and Engineering Reports, 2022, 148, 100672.	31.8	30
144	Assembly of Foldable 3D Microstructures Using Graphene Hinges. Advanced Materials, 2020, 32, e2001303.	21.0	29

#	Article	IF	CITATIONS
145	Low-temperature growth and direct transfer of graphene–graphitic carbon films on flexible plastic substrates. Nanotechnology, 2012, 23, 344016.	2.6	28
146	Si membrane based tactile sensor with active matrix circuitry for artificial skin applications. Applied Physics Letters, 2015, 106, .	3.3	28
147	Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal–Organic Vapor-Phase Epitaxy and Their Application in Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 44335-44344.	8.0	28
148	Grapheneâ€Based Nanomaterials for Flexible and Stretchable Batteries. Small, 2021, 17, e2006262.	10.0	28
149	MECHANICAL FLEXIBILITY OF ZINC OXIDE THIN-FILM TRANSISTORS PREPARED BY TRANSFER PRINTING METHOD. Modern Physics Letters B, 2012, 26, 1250077.	1.9	27
150	Unconventional Transport through Graphene on SrTiO3: A Plausible Effect of SrTiO3 Phase-Transitions. Scientific Reports, 2014, 4, 6173.	3.3	27
151	Low-temperature, high-growth-rate ALD of SiO2 using aminodisilane precursor. Applied Surface Science, 2019, 485, 381-390.	6.1	27
152	3D motion tracking display enabled by magneto-interactive electroluminescence. Nature Communications, 2020, 11, 6072.	12.8	27
153	Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Science Advances, 2022, 8, eabm6693.	10.3	27
154	Graphene Based Nanogenerator for Energy Harvesting. Japanese Journal of Applied Physics, 2013, 52, 06GA02.	1.5	26
155	Additive-free synthesis of Li ₄ Ti ₅ O ₁₂ nanowire arrays on freestanding ultrathin graphite as a hybrid anode for flexible lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 19197-19206.	10.3	26
156	Structural inversion in 3-D hexagonal organization of coil–rod–coil molecule. Chemical Communications, 2005, , 1197-1199.	4.1	25
157	Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Applied Surface Science, 2019, 494, 591-599.	6.1	25
158	Orientation-dependent optical characterization of atomically thin transition metal ditellurides. Nanoscale, 2018, 10, 21978-21984.	5.6	24
159	Probing the upper band gap of atomic rhenium disulfide layers. Light: Science and Applications, 2018, 7, 98.	16.6	24
160	Development of electronic devices based on two-dimensional materials. FlatChem, 2017, 3, 43-63.	5.6	23
161	Transient SHG Imaging on Ultrafast Carrier Dynamics of MoS ₂ Nanosheets. Advanced Materials, 2018, 30, e1705190.	21.0	23
162	Mechanism of morphological transition from lamellar/perforated layer to gyroid phases. Macromolecular Research, 2003, 11, 152-156.	2.4	21

#	Article	IF	CITATIONS
163	Morphable 3D structure for stretchable display. Materials Today, 2022, 53, 51-57.	14.2	21
164	Damage-free transfer mechanics of 2-dimensional materials: competition between adhesion instability and tensile strain. NPG Asia Materials, 2021, 13, .	7.9	20
165	Polypyrrole-coated copper nanowire-threaded silver nanoflowers for wearable strain sensors with high sensing performance. Chemical Engineering Journal, 2021, 417, 127966.	12.7	20
166	Additive-free electrode fabrication with reduced graphene oxide using supersonic kinetic spray for flexible lithium-ion batteries. Carbon, 2018, 139, 195-204.	10.3	19
167	Crypto primitive of MOCVD MoS2 transistors for highly secured physical unclonable functions. Nano Research, 2021, 14, 1784-1788.	10.4	19
168	Mechanically flexible thin film transistors and logic gates on plastic substrates by use of single-crystal silicon wires from bulk wafers. Applied Physics Letters, 2010, 96, .	3.3	18
169	Slippery and Wear-Resistant Surfaces Enabled by Interface Engineered Graphene. Nano Letters, 2020, 20, 905-917.	9.1	18
170	Improvement of work function and hole injection efficiency of graphene anode using CHF ₃ plasma treatment. 2D Materials, 2015, 2, 014002.	4.4	17
171	Universality of strain-induced anisotropic friction domains on 2D materials. NPG Asia Materials, 2018, 10, 1069-1075.	7.9	17
172	Stretchable Si Logic Devices with Graphene Interconnects. Small, 2015, 11, 6272-6277.	10.0	15
173	A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials, 2016, 8, e262-e262.	7.9	15
174	Thickness-Dependent Phonon Renormalization and Enhanced Raman Scattering in Ultrathin Silicon Nanomembranes. Nano Letters, 2017, 17, 7744-7750.	9.1	15
175	Ultrasoft silicon nanomembranes: thickness-dependent effective elastic modulus. Nanoscale, 2019, 11, 15184-15194.	5.6	15
176	Pressure-induced chemical enhancement in Raman scattering from graphene–Rhodamine 6G–graphene sandwich structures. Carbon, 2015, 89, 318-327.	10.3	14
177	Mobility enhancement of strained Si transistors by transfer printing on plastic substrates. NPG Asia Materials, 2016, 8, e256-e256.	7.9	14
178	Epidural Electrotherapy for Epilepsy. Small, 2018, 14, e1801732.	10.0	14
179	Residue-free photolithographic patterning of graphene. Chemical Engineering Journal, 2022, 429, 132504.	12.7	14
180	Effect of Polyisoprene Molecular Weight on Morphological Transition in Binary Blends of Styreneâ~Isoprene Diblock Copolymer and Polyisoprene. Macromolecules, 2002, 35, 10238-10240.	4.8	13

#	Article	IF	CITATIONS
181	Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures. 2D Materials, 2015, 2, 044006.	4.4	12
182	3D‣tructured Photodetectors Based on 2D Transitionâ€Metal Dichalcogenide. Small Structures, 2022, 3,	12.0	12
183	Observation of the Inverse Giant Piezoresistance Effect in Silicon Nanomembranes Probed by Ultrafast Terahertz Spectroscopy. Nano Letters, 2014, 14, 6942-6948.	9.1	11
184	Flexible graphene based microwave attenuators. Nanotechnology, 2015, 26, 055201.	2.6	11
185	Graphene-electrode array for brain map remodeling of the cortical surface. NPG Asia Materials, 2021, 13, .	7.9	11
186	Micelle Formation in Mixtures of Styreneâ lsoprene Diblock Copolymer and Poly(vinyl methyl ether). Macromolecules, 2001, 34, 4459-4465.	4.8	10
187	Interfacial change on morphological transitions in styrene–isoprene diblock copolymer. European Polymer Journal, 2009, 45, 2450-2454.	5.4	10
188	Low Temperature Aluminum Oxide Gate Dielectric on Plastic Film for Flexible Device Application. Japanese Journal of Applied Physics, 2010, 49, 05EA01.	1.5	9
189	Rate performance enhancement of lithium-ion battery using precise thickness-controllable-carbon-coated titanium dioxide nanowire array electrode via atomic layer deposition. Electrochimica Acta, 2020, 334, 135596.	5.2	9
190	A Facile Route for Patterned Growth of Metal–Insulator Carbon Lateral Junction through One-Pot Synthesis. ACS Nano, 2015, 9, 8352-8360.	14.6	8
191	Dual Resonant Sum Frequency Generations from Two-Dimensional Materials. Nano Letters, 2020, 20, 4530-4536.	9.1	8
192	Biomimetic metal–organic framework-derived porous carbon welded carbon nanotube networks for strain sensors with high sensitivity and wide sensing range. Applied Surface Science, 2022, 593, 153417.	6.1	8
193	A Numerical Study on the Mechanical Characteristics of Zinc Oxide-Based Transparent Thin Film Transistors. Journal of Nanoscience and Nanotechnology, 2011, 11, 5870-5875.	0.9	7
194	Technology of Flexible Semiconductor/Memory Device. Journal of the Microelectronics and Packaging Society, 2013, 20, 1-9.	0.1	7
195	Defect Tolerance and Nanomechanics in Transistors that Use Semiconductor Nanomaterials and Ultrathin Dielectrics. Advanced Functional Materials, 2008, 18, 2535-2540.	14.9	6
196	Layout influence on microwave performance of graphene field effect transistors. Electronics Letters, 2018, 54, 984-986.	1.0	6
197	Si nanomebranes: Material properties and applications. Nano Research, 2021, 14, 3010-3032.	10.4	6
198	Uniform Growth of High-Quality Oxide Thin Films on Graphene Using a CdSe Quantum Dot Array Seeding Layer. ACS Applied Materials & Interfaces, 2014, 6, 13015-13022.	8.0	5

#	Article	IF	CITATIONS
199	Tactile Sensors: MoS ₂ â€Based Tactile Sensor for Electronic Skin Applications (Adv. Mater.) Tj ETQq1	1,0.78431 21.0	4 rgBT /Ove
200	Instability in an amorphous In–Ga–Zn–O field effect transistor upon water exposure. Journal Physics D: Applied Physics, 2016, 49, 055102.	2.8	5
201	In-plane optical and electrical anisotropy in low-symmetry layered GeS microribbons. NPG Asia Materials, 2022, 14, .	7.9	5
202	Infinitely high selective inductively coupled plasma etching of an indium tin oxide binary mask structure for extreme ultraviolet lithography. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 761-765.	2.1	4
203	Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene. Scientific Reports, 2013, 3, 3404.	3.3	4
204	Selective growth of inorganic nanomaterials on an oxidized graphene scaffold. Carbon, 2014, 78, 317-325.	10.3	4
205	The effect of block lengths on micelle structure in blends of styrene–isoprene diblock copolymer and poly(vinyl methyl ether). Polymer, 2002, 43, 3345-3351.	3.8	3
206	Graphene Photodetectors: High–Performance Perovskite–Graphene Hybrid Photodetector (Adv.) Tj ETQqO 0 () rgBT /Ove 21.0	eglock 10 Tf
207	Observation of the Initial Stage of 3C-SiC Heteroepitaxial Growth on the Si Nanomembrane. Crystal Growth and Design, 2022, 22, 1421-1426.	3.0	3
208	Hydrogen Defect Passivation of Silicon Transistor on Plastic for High Performance Flexible Device Application. Electrochemical and Solid-State Letters, 2010, 13, H80.	2.2	2
209	Synthesis of additive free electrode material of supercapacitor for energy storage applications. , 2016, , .		2
210	Stretchable Displays: Stretchable Active Matrix Inorganic Lightâ€Emitting Diode Display Enabled by Overlayâ€Aligned Rollâ€Transfer Printing (Adv. Funct. Mater. 11/2017). Advanced Functional Materials, 2017, 27, .	14.9	2
211	Transfer Printing Techniques and Inorganic Single-Crystalline Materials for Flexible and Stretchable Electronics. , 0, , 407-447.		1
212	Mechanically flexible PZT thin films on plastic substrates. , 2010, , .		1
213	Graphene modelocked VECSELs. , 2014, , .		1
214	Graphene saturable absorbers for VECSELs. Proceedings of SPIE, 2014, , .	0.8	1
215	Investigation on Metal–Oxide Graphene Field-Effect Transistors With Clamped Geometries. IEEE Journal of the Electron Devices Society, 2019, 7, 964-968.	2.1	1
216	Numerical Design of SiO2Bridges in Stretchable Thin Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 01AG10.	1.5	1

#	Article	IF	CITATIONS
217	Inside Front Cover: Defect Tolerance and Nanomechanics in Transistors that Use Semiconductor Nanomaterials and Ultrathin Dielectrics (Adv. Funct. Mater. 17/2008). Advanced Functional Materials, 2008, 18, .	14.9	0
218	Effect of Homopolymer Molecular Weight on Order-Order Transition in Block Copolymer and Homopolymer Blends. Journal of Nanoscience and Nanotechnology, 2009, 9, 7499-502.	0.9	0
219	Flexible thin flim transistor using printed single-walled carbon nanotubes. , 2010, , .		0
220	NUMERICAL ANALYSIS ON THE MECHANICAL PROPERTIES OF ORGANIC THIN FILM TRANSISTOR. Modern Physics Letters B, 2010, 24, 1471-1474.	1.9	0
221	Deformation Characteristics of an Organic Thin Film Transistor. Journal of Nanoscience and Nanotechnology, 2011, 11, 239-242.	0.9	0
222	The mechanical reliability of transparent ZnO TFT transfer printed on the flexible substrate. AIP Conference Proceedings, 2011, , .	0.4	0
223	Numerical Design of SiO\$_{2}\$ Bridges in Stretchable Thin Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 01AG10.	1.5	0
224	Passively modelocked VECSEL using a single-layer graphene saturable absorber mirror. , 2013, , .		0
225	Flexible Transistors: Dryingâ€Mediated Selfâ€Assembled Growth of Transition Metal Dichalcogenide Wires and their Heterostructures (Adv. Mater. 28/2015). Advanced Materials, 2015, 27, 4243-4243.	21.0	0
226	Giant modulation depth in the photoexcited topological surface plasmons exceeding 2,400 %. , 2015, , .		0
227	Flexible Electronics: Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide (Small 41/2016). Small, 2016, 12, 5650-5650.	10.0	0
228	Carrier Dynamics: Transient SHG Imaging on Ultrafast Carrier Dynamics of MoS2 Nanosheets (Adv.) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf S
229	Heterostructure Arrays: Direct Synthesis of a Selfâ€Assembled WSe ₂ /MoS ₂ Heterostructure Array and its Optoelectrical Properties (Adv. Mater. 43/2019). Advanced Materials, 2019, 31, 1970309.	21.0	0
230	Study on Design of ZnO-Based Thin-Film Transistors With Optimal Mechanical Stability. Transactions of the Korean Society of Mechanical Engineers, B, 2011, 35, 17-22.	0.1	0
231	Graphene based Transparent Conductive Film : Status and Perspective. Journal of the Korean Ceramic Society, 2013, 50, 309-318.	2.3	Ο

232 Ultrafast terahertz spectroscopy of the inverse giant piezoresistance effect in silicon nanomembranes. , 2015, , .