Ai-shui Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6288584/publications.pdf Version: 2024-02-01

Δι-ςμιμ Υμ

#	Article	IF	CITATIONS
1	Artificial solid-electrolyte interface facilitating uniform Zn deposition by promoting chemical adsorption. Science China Materials, 2022, 65, 663-674.	6.3	14
2	Double-Protected Layers with Solid–Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4170-4178.	8.0	14
3	Nano-TiO ₂ coated single-crystal LiNi _{0.65} Co _{0.15} Mn _{0.2} O ₂ for lithium-ion batteries with a stable structure and excellent cycling performance at a high cut-off voltage. Journal of Materials Chemistry A 2022 10 5631-5641	10.3	12
4	Enhancement in lithium storage performances of SiO2/graphene-basedÂnanocomposites prepared by low cost and facile approach. Journal of Materials Science: Materials in Electronics, 2022, 33, 6536-6548.	2.2	7
5	Fast-Charging Anode Materials and Novel Nanocomposite Design of Rice Husk-Derived SiO ₂ and Sn Nanoparticles Self-Assembled on TiO ₂ (B) Nanorods for Lithium-Ion Storage Applications. ACS Omega, 2022, 7, 1357-1367.	3.5	9
6	Rice husk-derived nano-SiO ₂ assembled on reduced graphene oxide distributed on conductive flexible polyaniline frameworks towards high-performance lithium-ion batteries. RSC Advances, 2022, 12, 14621-14630.	3.6	14
7	A low-temperature coating method with H3BO3 for enhanced electrochemical performance of Ni-rich LiNi0.82Co0.12Mn0.06O2 cathode. Electrochimica Acta, 2022, 422, 140564.	5.2	7
8	Natural sesbania gum as an efficient biopolymer binder for high-performance Si-based anodes in lithium-ion batteries. Journal of Power Sources, 2022, 539, 231604.	7.8	16
9	Effects of Co/Mn Content Variation on Structural and Electrochemical Properties of Single-Crystal Ni-Rich Layered Oxide Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24620-24635.	8.0	6
10	Surface-reinforced NCM811 with enhanced electrochemical performance for Li-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165488.	5.5	7
11	H3BO3 washed LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance and storage characteristics. Journal of Power Sources, 2021, 482, 228940.	7.8	45
12	Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controllable Strategy Using Stabilized Lithium Metal Powder. ACS Sustainable Chemistry and Engineering, 2021, 9, 648-657.	6.7	60
13	Porous calcium–manganese oxide/carbon nanotube microspheres as efficient oxygen reduction catalysts for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2021, 8, 2052-2060.	6.0	10
14	Transformation of SnS Nanocompisites to Sn and S Nanoparticles during Lithiation. Crystals, 2021, 11, 145.	2.2	3
15	Application of In Situ Raman and Fourier Transform Infrared Spectroelectrochemical Methods on the Electrodeâ€Electrolyte Interface for Lithiumâ°'Oxygen Batteries. Batteries and Supercaps, 2021, 4, 850-859.	4.7	12
16	Ultrathin Li–Si–O Coating Layer to Stabilize the Surface Structure and Prolong the Cycling Life of Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Materials at 4.5 V. ACS Applied Materials & Interfaces, 2021, 13, 10952-10963.	8.0	37
17	Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode at 4.5 V. ACS Applied Materials & Interfaces, 2021, 13, 7308-7316.	8.0	40
18	Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium Ion Batteries. Molecules, 2021, 26, 1536.	3.8	13

#	Article	IF	CITATIONS
19	A carboxymethyl vegetable gum as a robust water soluble binder for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2021, 489, 229530.	7.8	31
20	Detection of lithium plating in lithium-ion batteries by distribution of relaxation times. Journal of Power Sources, 2021, 496, 229867.	7.8	65
21	PROPORTIONAL EFFECT IN SbSi/N-DOPED GRAPHENE NANOCOMPOSITE PREPARATION FOR HIGH-PERFORMANCE LITHIUM-ION BATTERIES. Surface Review and Letters, 2021, 28, .	1.1	2
22	Uniform Deposition and Effective Confinement of Lithium in Three-Dimensional Interconnected Microchannels for Stable Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 39311-39321.	8.0	15
23	Comparative Studies of Polycrystal and Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ in Terms of Physical and Electrochemical Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 11748-11757.	6.7	11
24	Dopamine-modified carboxymethyl cellulose as an improved aqueous binder for silicon anodes in lithium-ion batteries. Electrochimica Acta, 2021, 389, 138806.	5.2	23
25	Tetramethylpyrazine: an electrolyte additive for high capacity and energy efficiency lithium–oxygen batteries. RSC Advances, 2021, 11, 24320-24325.	3.6	1
26	Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid–Liquid Hybrid Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 2685-2693.	8.0	30
27	Enhancing the air stability of LiNi0.6Co0.2Mn0.2O2 cathode through WO3/Li2WO4 surface modification. Journal of Power Sources, 2021, 514, 230605.	7.8	9
28	Comparative performance of LiFePO4 and LiNi0.6Co0.2Mn0.2O2 cathode materials for lithium batteries with solid–liquid hybrid electrolytes. Journal of Power Sources, 2021, 515, 230639.	7.8	9
29	In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels–Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56095-56108.	8.0	11
30	Facile Synthesis Sandwich-Structured Ge/NrGO Nanocomposite as Anodes for High-Performance Lithium-Ion Batteries. Crystals, 2021, 11, 1582.	2.2	4
31	Effect of fluoroethylene carbonate as an electrolyte solvent in the LiNi0.5Mn1.5O4/Li4Ti5O12 cell. Journal of Alloys and Compounds, 2020, 812, 152064.	5.5	11
32	A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 449, 227472.	7.8	79
33	LiFePO ₄ -coated LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for lithium-ion batteries with enhanced cycling performance at elevated temperatures and high voltages. RSC Advances, 2020, 10, 37916-37922.	3.6	8
34	Reducing interfacial resistance of a Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ solid electrolyte/electrode interface by polymer interlayer protection. RSC Advances, 2020, 10, 10038-10045.	3.6	27
35	Improved electrochemical performance of anode materials for high energy density lithium-ion batteries through Sn(SnO ₂)–SiO ₂ /graphene-based nanocomposites prepared by a facile and low-cost approach. Sustainable Energy and Fuels, 2020, 4, 4625-4636.	4.9	20
36	Enhancing the Cycling Stability of Ni-Rich LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode at a High Cutoff Voltage with Ta Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 3082-3090.	6.7	64

#	Article	IF	CITATIONS
37	Cost-effective production of SiO2/C and Si/C composites derived from rice husk for advanced lithium-ion battery anodes. Journal of Materials Science: Materials in Electronics, 2020, 31, 9126-9132.	2.2	24
38	Ultrafast-charging and long cycle-life anode materials of TiO ₂ -bronze/nitrogen-doped graphene nanocomposites for high-performance lithium-ion batteries. RSC Advances, 2020, 10, 43811-43824.	3.6	23
39	Dynamic evolution of Cathodeâ ``Electrolyte interface of LiNi0.6Co0.2Mn0.2O2 during the initial Chargeâ ``Discharge process. Journal of Power Sources, 2019, 438, 226979.	7.8	37
40	Rational design of a hierarchical N-doped graphene-supported catalyst for highly energy-efficient lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 19745-19752.	10.3	12
41	Ruthenium Oxide Modified alphaâ€Manganese Dioxide Nanotube as Efficient Bifunctional Cathode Catalysts for Lithium Oxygen Batteries. ChemistrySelect, 2019, 4, 7455-7462.	1.5	10
42	Self-Sacrificed Interface-Based on the Flexible Composite Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42715-42721.	8.0	31
43	Revealing the Effect of Ti Doping on Significantly Enhancing Cyclic Performance at a High Cutoff Voltage for Ni-Rich LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 10661-10669.	6.7	79
44	Propelling Polysulfide Conversion by Defect-Rich MoS ₂ Nanosheets for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20788-20795.	8.0	89
45	Ultradispersed titanium dioxide nanoparticles embedded in a three-dimensional graphene aerogel for high performance sulfur cathodes. RSC Advances, 2019, 9, 6568-6575.	3.6	5
46	Dithiothreitol as a promising electrolyte additive to suppress the "shuttle effect―by slicing the disulfide bonds of polysulfides in lithium-sulfur batteries. Journal of Power Sources, 2019, 424, 254-260.	7.8	20
47	LiTFSI Concentration Optimization in TEGDME Solvent for Lithium–Oxygen Batteries. ACS Omega, 2019, 4, 20708-20714.	3.5	27
48	Building well-defined hierarchical nanostructures for sulfur and silicon electrodes. Progress in Natural Science: Materials International, 2019, 29, 672-678.	4.4	1
49	Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries. Nano Research, 2019, 12, 517-523.	10.4	12
50	A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4311-4317.	8.0	67
51	Revealing the role of NH ₄ VO ₃ treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries. Nanoscale, 2018, 10, 8820-8831.	5.6	77
52	Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode. Journal of Power Sources, 2018, 381, 66-71.	7.8	63
53	Significant Improvement on Electrochemical Performance of LiMn ₂ O ₄ at Elevated Temperature by Atomic Layer Deposition of TiO ₂ Nanocoating. ACS Sustainable Chemistry and Engineering, 2018, 6, 7890-7901.	6.7	47
54	A new type of cyclic silicone additive for improving the energy density and power density of Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 7221-7226.	10.3	14

#	Article	IF	CITATIONS
55	Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode charged at higher voltage of 4.5ÂV. Journal of Power Sources, 2018, 374, 149-157.	7.8	84
56	Ruthenium oxide modified hierarchically porous boron-doped graphene aerogels as oxygen electrodes for lithium–oxygen batteries. RSC Advances, 2018, 8, 39829-39836.	3.6	9
57	Understanding the effects of surface modification on improving the high-voltage performance of Ni-rich cathode materials. Materials Today Energy, 2018, 10, 40-47.	4.7	17
58	Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li–oxygen batteries. Nanoscale, 2018, 10, 15763-15770.	5.6	21
59	Enhanced Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode for Lithium-Ion Batteries by Precursor Preoxidation. ACS Applied Energy Materials, 2018, 1, 4374-4384.	5.1	28
60	Structure and Catalyst Effects on the Electrochemical Performance of Air Electrodes in Lithiumâ€Oxygen Batteries. ChemElectroChem, 2018, 5, 2666-2671.	3.4	5
61	Al 2 O 3 -doped ZnO coating of carbon nanotubes as cathode material for lithium-sulfur batteries. Journal of Power Sources, 2018, 398, 75-82.	7.8	34
62	A porous Co–Ru@C shell as a bifunctional catalyst for lithium–oxygen batteries. RSC Advances, 2018, 8, 23973-23980.	3.6	1
63	Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures. Journal of Power Sources, 2018, 393, 92-98.	7.8	62
64	Mesoporous Co–CoO@NC Microâ€Disk Derived from ZIFâ€9 as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. ChemistrySelect, 2018, 3, 9276-9283.	1.5	10
65	Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. Journal of Power Sources, 2018, 396, 288-296.	7.8	105
66	Three-Dimensional Porous Si and SiO ₂ with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17807-17813.	8.0	62
67	Zn–Fe–O@C hollow microspheres as a high performance anode material for lithium-ion batteries. RSC Advances, 2017, 7, 5459-5465.	3.6	6
68	Enhancing Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 by Lithium-ion Conductor Surface Modification. Electrochimica Acta, 2017, 224, 171-177.	5.2	51
69	New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Science China Chemistry, 2017, 60, 1402-1412.	8.2	32
70	Enhancing Electrochemical Performance of LiMn ₂ O ₄ Cathode Material at Elevated Temperature by Uniform Nanosized TiO ₂ Coating. ACS Sustainable Chemistry and Engineering, 2017, 5, 640-647.	6.7	54
71	Polyaniline-coated partially unzipped vapor-grown carbon fibers/sulfur microsphere composites for Li–S cathodes. Journal of Electroanalytical Chemistry, 2016, 761, 62-67.	3.8	8
72	A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy Li S batteries. Renewable Energy, 2016, 96, 333-340.	8.9	24

#	Article	IF	CITATIONS
73	Surface noble metal modified PdM/C (MÂ=ÂRu, Pt, Au) as anode catalysts for direct ethanol fuel cells. Journal of Alloys and Compounds, 2016, 676, 390-396.	5.5	26
74	Electrochemical surface modification on CuPdAu/C with extraordinary behavior toward formic acid/formate oxidation. International Journal of Hydrogen Energy, 2016, 41, 13190-13196.	7.1	26
75	High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Advances, 2016, 6, 107355-107363.	3.6	10
76	Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Scientific Reports, 2016, 6, 33154.	3.3	77
77	Sulfur Encapsulated in Mo ₄ O ₁₁ -Anchored Ultralight Graphene for High-Energy Lithium Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 3679-3687.	6.7	25
78	Three-dimensional MoS _x (1 < x < 2) nanosheets decorated graphene aerogel for lithium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 10986-10991.	10.3	33
79	Enhanced Electrochemical Performance of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Cathode with an Ionic Conductive LiVO ₃ Coating Layer. ACS Sustainable Chemistry and Engineering, 2016, 4, 255-263.	6.7	54
80	Synthesis and Electrochemical Performance of Nano-sized Li4Ti5O12 Coated with Boron-Doped Carbon. Electrochimica Acta, 2016, 196, 300-308.	5.2	34
81	Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 3893-3899.	2.8	46
82	Facile preparation of three-dimensional porous Pd–Au films and their electrocatalytic activity for methanol oxidation. Catalysis Communications, 2016, 73, 22-26.	3.3	24
83	Surface Palladium rich CuxPdy/carbon catalysts for methanol and ethanol oxidation in alkaline media. Electrochimica Acta, 2015, 174, 1-7.	5.2	20
84	Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochimica Acta, 2015, 163, 82-92.	5.2	75
85	A new, high energy rechargeable lithium ion battery with a surface-treated Li1.2Mn0.54Ni0.13Co0.13O2 cathode and a nano-structured Li4Ti5O12 anode. Journal of Alloys and Compounds, 2015, 648, 7-12.	5.5	18
86	Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries. Journal of Alloys and Compounds, 2015, 646, 522-527.	5.5	73
87	Carbon-Coated Mesoporous TiO ₂ Nanocrystals Grown on Graphene for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10395-10400.	8.0	51
88	Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Science Bulletin, 2015, 60, 823-838.	9.0	217
89	Enhancing the performance of LiMnPO4/C composites through Cr doping. Journal of Alloys and Compounds, 2015, 620, 350-357.	5.5	35
90	Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co3O4 nanoparticles. Journal of Power Sources, 2015, 273, 894-903.	7.8	22

#	Article	IF	CITATIONS
91	Fe doped Li1.2Mn0.6-x/2Ni0.2-x/2FexO2 (xâ‰ 0 .1) as cathode materials for lithium-ion batteries. Electrochimica Acta, 2014, 133, 555-563.	5.2	45
92	Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite. Journal of Alloys and Compounds, 2014, 587, 133-137.	5.5	16
93	Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium-sulfur batteries. Electrochimica Acta, 2014, 116, 210-216.	5.2	60
94	Synergistic effect of amorphous carbon coverage and enlarged voltage window on the superior lithium storage performance of nanostructured mesoporous anatase TiO2: Emphasis on interfacial storage phenomena. Journal of Alloys and Compounds, 2014, 606, 61-67.	5.5	8
95	Facile synthesis of trimetallic Cu ₁ Au _{0.15} Pd _{1.5} /C catalyst for ethanol oxidation with superior activity and stability. Journal of Materials Chemistry A, 2014, 2, 16378-16380.	10.3	11
96	Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 5117.	10.3	70
97	Three-Dimensional Flower-Shaped Activated Porous Carbon/Sulfur Composites as Cathode Materials for Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2014, 2, 2442-2447.	6.7	34
98	Carbon-free (Co, Mn) ₃ O ₄ nanowires@Ni electrodes for lithium–oxygen batteries. Nanoscale, 2014, 6, 9043.	5.6	48
99	Surface platinum-rich CuPt bimetallic nanoparticles supported by partially unzipped vapor grown carbon fibers and their electrocatalytic activities. RSC Advances, 2014, 4, 29429-29434.	3.6	4
100	Rapid synthesis of porous Pd and PdNi catalysts using hydrogen bubble dynamic template and their enhanced catalytic performance for methanol electrooxidation. Journal of Power Sources, 2013, 241, 660-667.	7.8	54
101	Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochemistry Communications, 2013, 29, 17-20.	4.7	117
102	Carbon coated TiO2–SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7360.	10.3	41
103	Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochimica Acta, 2013, 113, 248-255.	5.2	25
104	Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. Journal of Power Sources, 2013, 229, 203-209.	7.8	48
105	Facile synthesis of Sn/TiO2 nanowire array composites as superior lithium-ion battery anodes. Journal of Power Sources, 2013, 223, 50-55.	7.8	32
106	CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 2013, 109, 52-58.	5.2	172
107	Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes. Journal of Power Sources, 2013, 238, 165-172.	7.8	38
108	Binder-free nitrogen-doped carbon nanotubes electrodes forÂlithium-oxygen batteries. Journal of Power Sources, 2013, 242, 855-859.	7.8	67

#	Article	IF	CITATIONS
109	Hierarchically porous honeycomb-like carbon as a lithium–oxygen electrode. Journal of Materials Chemistry A, 2013, 1, 1239-1245.	10.3	77
110	Hierarchical hollow Fe2O3 micro-flowers composed of porous nanosheets as high performance anodes for lithium-ion batteries. RSC Advances, 2013, 3, 20639.	3.6	28
111	Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor. Journal of Alloys and Compounds, 2012, 518, 58-62.	5.5	32
112	Polyaniline membranes as waterproof barriers for lithium air batteries. Electrochimica Acta, 2012, 78, 195-199.	5.2	41
113	Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. Journal of Solid State Electrochemistry, 2012, 16, 1447-1452.	2.5	60
114	Electrodeposited Pd–MoOx catalysts with enhanced catalytic activity for formic acid electrooxidation. Electrochimica Acta, 2012, 76, 292-299.	5.2	11
115	Design and synthesis of Cu6Sn5-coated TiO2 nanotube arrays as anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 3216.	6.7	34
116	Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. Journal of Power Sources, 2011, 196, 10240-10243.	7.8	256
117	Fabrication of morphology controllable rutile TiO2 nanowire arrays by solvothermal route for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 7696-7702.	5.2	24
118	A hierarchical porous MnO2-based electrode for electrochemical capacitor. Journal of Solid State Electrochemistry, 2011, 15, 485-491.	2.5	15
119	Ultrasonic-assisted synthesis of Pd–Ni alloy catalysts supported on multi-walled carbon nanotubes for formic acid electrooxidation. Electrochimica Acta, 2011, 56, 6860-6865.	5.2	113
120	AC impedance investigation of plating potentials on the catalytic activities of Pt nanocatalysts for methanol electrooxidation. Journal of Solid State Electrochemistry, 2010, 14, 101-107.	2.5	19
121	TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1045-1050.	2.5	45
122	Preparation of carbon supported Pd–Pb hollow nanospheres and their electrocatalytic activities for formic acid oxidation. Electrochemistry Communications, 2010, 12, 901-904.	4.7	40
123	Three-dimensional porous Sn–Cu alloy anode for lithium-ion batteries. Electrochimica Acta, 2010, 55, 7310-7314.	5.2	123
124	Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries. Journal of the Electrochemical Society, 2010, 157, A362.	2.9	74
125	De-doped polyaniline nanofibres with micropores for high-rate aqueous electrochemical capacitor. Synthetic Metals, 2010, 160, 1579-1583.	3.9	44
126	Electro-oxidation of methanol on co-deposited Pt-MoO x prepared by cyclic voltammetry with different scanning potential ranges. Journal of Applied Electrochemistry, 2009, 39, 1053-1058.	2.9	12

#	Article	IF	CITATIONS
127	Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors. Electrochemistry Communications, 2009, 11, 266-269.	4.7	88
128	A novel route for preparation of PtRuMe (Me=Fe, Co, Ni) and their catalytic performance for methanol electrooxidation. Electrochemistry Communications, 2009, 11, 643-646.	4.7	53
129	A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochimica Acta, 2009, 54, 3047-3052.	5.2	156
130	Synthesis of well-dispersed PtRuSnOx by ultrasonic-assisted chemical reduction and its property for methanol electrooxidation. Electrochimica Acta, 2009, 54, 4436-4440.	5.2	17
131	Factors influencing MnO2/multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode. Electrochimica Acta, 2009, 54, 7173-7179.	5.2	86
132	Synthesis and characterization of LiNi1â^'xâ^'yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources, 1999, 81-82, 416-419.	7.8	364