Ai-shui Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6288584/publications.pdf

Version: 2024-02-01

132 papers	5,565 citations	44 h-index	95266 68 g-index
132	132	132	6831 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Synthesis and characterization of LiNi1â^'xâ^'yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources, 1999, 81-82, 416-419.	7.8	364
2	Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. Journal of Power Sources, 2011, 196, 10240-10243.	7.8	256
3	Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Science Bulletin, 2015, 60, 823-838.	9.0	217
4	CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 2013, 109, 52-58.	5.2	172
5	A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochimica Acta, 2009, 54, 3047-3052.	5. 2	156
6	Three-dimensional porous Sn–Cu alloy anode for lithium-ion batteries. Electrochimica Acta, 2010, 55, 7310-7314.	5. 2	123
7	Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochemistry Communications, 2013, 29, 17-20.	4.7	117
8	Ultrasonic-assisted synthesis of Pd–Ni alloy catalysts supported on multi-walled carbon nanotubes for formic acid electrooxidation. Electrochimica Acta, 2011, 56, 6860-6865.	5.2	113
9	Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. Journal of Power Sources, 2018, 396, 288-296.	7.8	105
10	Propelling Polysulfide Conversion by Defect-Rich MoS ₂ Nanosheets for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20788-20795.	8.0	89
11	Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors. Electrochemistry Communications, 2009, 11, 266-269.	4.7	88
12	Factors influencing MnO2/multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode. Electrochimica Acta, 2009, 54, 7173-7179.	5.2	86
13	Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode charged at higher voltage of 4.5ÂV. Journal of Power Sources, 2018, 374, 149-157.	7.8	84
14	Revealing the Effect of Ti Doping on Significantly Enhancing Cyclic Performance at a High Cutoff Voltage for Ni-Rich LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 10661-10669.	6.7	79
15	A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 449, 227472.	7.8	79
16	Hierarchically porous honeycomb-like carbon as a lithium–oxygen electrode. Journal of Materials Chemistry A, 2013, 1, 1239-1245.	10.3	77
17	Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Scientific Reports, 2016, 6, 33154.	3.3	77
18	Revealing the role of NH ₄ VO ₃ treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries. Nanoscale, 2018, 10, 8820-8831.	5.6	77

#	Article	IF	CITATIONS
19	Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochimica Acta, 2015, 163, 82-92.	5.2	75
20	Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries. Journal of the Electrochemical Society, 2010, 157, A362.	2.9	74
21	Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries. Journal of Alloys and Compounds, 2015, 646, 522-527.	5 . 5	73
22	Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 5117.	10.3	70
23	Binder-free nitrogen-doped carbon nanotubes electrodes forÂlithium-oxygen batteries. Journal of Power Sources, 2013, 242, 855-859.	7.8	67
24	A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4311-4317.	8.0	67
25	Detection of lithium plating in lithium-ion batteries by distribution of relaxation times. Journal of Power Sources, 2021, 496, 229867.	7.8	65
26	Enhancing the Cycling Stability of Ni-Rich LiNi _{0.2} 0.6 Cathode at a High Cutoff Voltage with Ta Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 3082-3090.	6.7	64
27	Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode. Journal of Power Sources, 2018, 381, 66-71.	7.8	63
28	Three-Dimensional Porous Si and SiO ₂ with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17807-17813.	8.0	62
29	Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures. Journal of Power Sources, 2018, 393, 92-98.	7.8	62
30	Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. Journal of Solid State Electrochemistry, 2012, 16, 1447-1452.	2.5	60
31	Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium-sulfur batteries. Electrochimica Acta, 2014, 116, 210-216.	5.2	60
32	Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controllable Strategy Using Stabilized Lithium Metal Powder. ACS Sustainable Chemistry and Engineering, 2021, 9, 648-657.	6.7	60
33	Rapid synthesis of porous Pd and PdNi catalysts using hydrogen bubble dynamic template and their enhanced catalytic performance for methanol electrooxidation. Journal of Power Sources, 2013, 241, 660-667.	7.8	54
34	Enhanced Electrochemical Performance of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Cathode with an Ionic Conductive LiVO ₃ Coating Layer. ACS Sustainable Chemistry and Engineering, 2016, 4, 255-263.	6.7	54
35	Enhancing Electrochemical Performance of LiMn ₂ O ₄ Cathode Material at Elevated Temperature by Uniform Nanosized TiO ₂ Coating. ACS Sustainable Chemistry and Engineering, 2017, 5, 640-647.	6.7	54
36	A novel route for preparation of PtRuMe (Me=Fe, Co, Ni) and their catalytic performance for methanol electrooxidation. Electrochemistry Communications, 2009, 11, 643-646.	4.7	53

#	Article	IF	Citations
37	Carbon-Coated Mesoporous TiO ₂ Nanocrystals Grown on Graphene for Lithium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10395-10400.	8.0	51
38	Enhancing Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 by Lithium-ion Conductor Surface Modification. Electrochimica Acta, 2017, 224, 171-177.	5.2	51
39	Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. Journal of Power Sources, 2013, 229, 203-209.	7.8	48
40	Carbon-free (Co, Mn) ₃ O ₄ nanowires@Ni electrodes for lithium–oxygen batteries. Nanoscale, 2014, 6, 9043.	5.6	48
41	Significant Improvement on Electrochemical Performance of LiMn ₂ O ₄ at Elevated Temperature by Atomic Layer Deposition of TiO ₂ Nanocoating. ACS Sustainable Chemistry and Engineering, 2018, 6, 7890-7901.	6.7	47
42	Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 3893-3899.	2.8	46
43	TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1045-1050.	2.5	45
44	Fe doped Li1.2Mn0.6-x/2Ni0.2-x/2FexO2 (xâ‰ 6 .1) as cathode materials for lithium-ion batteries. Electrochimica Acta, 2014, 133, 555-563.	5.2	45
45	H3BO3 washed LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance and storage characteristics. Journal of Power Sources, 2021, 482, 228940.	7.8	45
46	De-doped polyaniline nanofibres with micropores for high-rate aqueous electrochemical capacitor. Synthetic Metals, 2010, 160, 1579-1583.	3.9	44
47	Polyaniline membranes as waterproof barriers for lithium air batteries. Electrochimica Acta, 2012, 78, 195-199.	5.2	41
48	Carbon coated TiO2–SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7360.	10.3	41
49	Preparation of carbon supported Pd–Pb hollow nanospheres and their electrocatalytic activities for formic acid oxidation. Electrochemistry Communications, 2010, 12, 901-904.	4.7	40
50	Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode at 4.5 V. ACS Applied Materials & Amp; Interfaces, 2021, 13, 7308-7316.	8.0	40
51	Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes. Journal of Power Sources, 2013, 238, 165-172.	7.8	38
52	Dynamic evolution of Cathodeâ^'Electrolyte interface of LiNi0.6Co0.2Mn0.2O2 during the initial Chargeâ^'Discharge process. Journal of Power Sources, 2019, 438, 226979.	7.8	37
53	Ultrathin Liâ€"Siâ€"O Coating Layer to Stabilize the Surface Structure and Prolong the Cycling Life of Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Materials at 4.5 V. ACS Applied Materials & Materials at 4.5 V. ACS Applied Materials & Mat	8.0	37
54	Enhancing the performance of LiMnPO4/C composites through Cr doping. Journal of Alloys and Compounds, 2015, 620, 350-357.	5.5	35

#	Article	IF	CITATIONS
55	Design and synthesis of Cu6Sn5-coated TiO2 nanotube arrays as anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 3216.	6.7	34
56	Three-Dimensional Flower-Shaped Activated Porous Carbon/Sulfur Composites as Cathode Materials for Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2014, 2, 2442-2447.	6.7	34
57	Synthesis and Electrochemical Performance of Nano-sized Li4Ti5O12 Coated with Boron-Doped Carbon. Electrochimica Acta, 2016, 196, 300-308.	5.2	34
58	Al 2 O 3 -doped ZnO coating of carbon nanotubes as cathode material for lithium-sulfur batteries. Journal of Power Sources, 2018, 398, 75-82.	7.8	34
59	Three-dimensional MoS _x (1 < x < 2) nanosheets decorated graphene aerogel for lithium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 10986-10991.	10.3	33
60	Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor. Journal of Alloys and Compounds, 2012, 518, 58-62.	5.5	32
61	Facile synthesis of Sn/TiO2 nanowire array composites as superior lithium-ion battery anodes. Journal of Power Sources, 2013, 223, 50-55.	7.8	32
62	New electrochemical energy storage systems based on metallic lithium anodeâ€"the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Science China Chemistry, 2017, 60, 1402-1412.	8.2	32
63	Self-Sacrificed Interface-Based on the Flexible Composite Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42715-42721.	8.0	31
64	A carboxymethyl vegetable gum as a robust water soluble binder for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2021, 489, 229530.	7.8	31
65	Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid–Liquid Hybrid Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2685-2693.	8.0	30
66	Hierarchical hollow Fe2O3 micro-flowers composed of porous nanosheets as high performance anodes for lithium-ion batteries. RSC Advances, 2013, 3, 20639.	3.6	28
67	Enhanced Electrochemical Performance of LiNi _{0.8} Cathode for Lithium-Ion Batteries by Precursor Preoxidation. ACS Applied Energy Materials, 2018, 1, 4374-4384.	5.1	28
68	LiTFSI Concentration Optimization in TEGDME Solvent for Lithium–Oxygen Batteries. ACS Omega, 2019, 4, 20708-20714.	3.5	27
69	Reducing interfacial resistance of a Li _{1.5} (PO ₄) ₃ solid electrolyte/electrode interface by polymer interlayer protection. RSC Advances, 2020, 10, 10038-10045.	3.6	27
70	Surface noble metal modified PdM/C (MÂ=ÂRu, Pt, Au) as anode catalysts for direct ethanol fuel cells. Journal of Alloys and Compounds, 2016, 676, 390-396.	5.5	26
71	Electrochemical surface modification on CuPdAu/C with extraordinary behavior toward formic acid/formate oxidation. International Journal of Hydrogen Energy, 2016, 41, 13190-13196.	7.1	26
72	Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochimica Acta, 2013, 113, 248-255.	5.2	25

#	Article	IF	Citations
73	Sulfur Encapsulated in Mo ₄ O ₁₁ -Anchored Ultralight Graphene for High-Energy Lithium Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 3679-3687.	6.7	25
74	Fabrication of morphology controllable rutile TiO2 nanowire arrays by solvothermal route for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 7696-7702.	5 . 2	24
75	A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy Li S batteries. Renewable Energy, 2016, 96, 333-340.	8.9	24
76	Facile preparation of three-dimensional porous Pd–Au films and their electrocatalytic activity for methanol oxidation. Catalysis Communications, 2016, 73, 22-26.	3.3	24
77	Cost-effective production of SiO2/C and Si/C composites derived from rice husk for advanced lithium-ion battery anodes. Journal of Materials Science: Materials in Electronics, 2020, 31, 9126-9132.	2.2	24
78	Dopamine-modified carboxymethyl cellulose as an improved aqueous binder for silicon anodes in lithium-ion batteries. Electrochimica Acta, 2021, 389, 138806.	5 . 2	23
79	Ultrafast-charging and long cycle-life anode materials of TiO ₂ -bronze/nitrogen-doped graphene nanocomposites for high-performance lithium-ion batteries. RSC Advances, 2020, 10, 43811-43824.	3 . 6	23
80	Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co3O4 nanoparticles. Journal of Power Sources, 2015, 273, 894-903.	7.8	22
81	Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li–oxygen batteries. Nanoscale, 2018, 10, 15763-15770.	5 . 6	21
82	Surface Palladium rich CuxPdy/carbon catalysts for methanol and ethanol oxidation in alkaline media. Electrochimica Acta, 2015, 174, 1-7.	5.2	20
83	Dithiothreitol as a promising electrolyte additive to suppress the "shuttle effect―by slicing the disulfide bonds of polysulfides in lithium-sulfur batteries. Journal of Power Sources, 2019, 424, 254-260.	7.8	20
84	Improved electrochemical performance of anode materials for high energy density lithium-ion batteries through Sn(SnO ₂)–SiO ₂ /graphene-based nanocomposites prepared by a facile and low-cost approach. Sustainable Energy and Fuels, 2020, 4, 4625-4636.	4.9	20
85	AC impedance investigation of plating potentials on the catalytic activities of Pt nanocatalysts for methanol electrooxidation. Journal of Solid State Electrochemistry, 2010, 14, 101-107.	2.5	19
86	A new, high energy rechargeable lithium ion battery with a surface-treated Li1.2Mn0.54Ni0.13Co0.13O2 cathode and a nano-structured Li4Ti5O12 anode. Journal of Alloys and Compounds, 2015, 648, 7-12.	5 . 5	18
87	Synthesis of well-dispersed PtRuSnOx by ultrasonic-assisted chemical reduction and its property for methanol electrooxidation. Electrochimica Acta, 2009, 54, 4436-4440.	5. 2	17
88	Understanding the effects of surface modification on improving the high-voltage performance of Ni-rich cathode materials. Materials Today Energy, 2018, 10, 40-47.	4.7	17
89	Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite. Journal of Alloys and Compounds, 2014, 587, 133-137.	5 . 5	16
90	Natural sesbania gum as an efficient biopolymer binder for high-performance Si-based anodes in lithium-ion batteries. Journal of Power Sources, 2022, 539, 231604.	7.8	16

#	Article	IF	CITATIONS
91	A hierarchical porous MnO2-based electrode for electrochemical capacitor. Journal of Solid State Electrochemistry, 2011, 15, 485-491.	2.5	15
92	Uniform Deposition and Effective Confinement of Lithium in Three-Dimensional Interconnected Microchannels for Stable Lithium Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39311-39321.	8.0	15
93	A new type of cyclic silicone additive for improving the energy density and power density of Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 7221-7226.	10.3	14
94	Artificial solid-electrolyte interface facilitating uniform Zn deposition by promoting chemical adsorption. Science China Materials, 2022, 65, 663-674.	6.3	14
95	Double-Protected Layers with Solid–Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries. ACS Applied Materials & Double-Protected Layers with Solid–Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries.	8.0	14
96	Rice husk-derived nano-SiO ₂ assembled on reduced graphene oxide distributed on conductive flexible polyaniline frameworks towards high-performance lithium-ion batteries. RSC Advances, 2022, 12, 14621-14630.	3.6	14
97	Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium Ion Batteries. Molecules, 2021, 26, 1536.	3.8	13
98	Electro-oxidation of methanol on co-deposited Pt-MoO x prepared by cyclic voltammetry with different scanning potential ranges. Journal of Applied Electrochemistry, 2009, 39, 1053-1058.	2.9	12
99	Rational design of a hierarchical N-doped graphene-supported catalyst for highly energy-efficient lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 19745-19752.	10.3	12
100	Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries. Nano Research, 2019, 12, 517-523.	10.4	12
101	Application of In Situ Raman and Fourier Transform Infrared Spectroelectrochemical Methods on the Electrodeâ€Electrolyte Interface for Lithiumâ^Oxygen Batteries. Batteries and Supercaps, 2021, 4, 850-859.	4.7	12
102	Nano-TiO ₂ coated single-crystal LiNi _{0.65} Co _{0.15} Mn _{0.2} O ₂ for lithium-ion batteries with a stable structure and excellent cycling performance at a high cut-off voltage. Journal of Materials Chemistry A, 2022, 10, 5631-5641.	10.3	12
103	Electrodeposited Pd–MoOx catalysts with enhanced catalytic activity for formic acid electrooxidation. Electrochimica Acta, 2012, 76, 292-299.	5.2	11
104	Facile synthesis of trimetallic Cu $<$ sub $>1sub>Au<sub>0.15sub>Pd<sub>1.5sub>/C catalyst for ethanol oxidation with superior activity and stability. Journal of Materials Chemistry A, 2014, 2, 16378-16380.$	10.3	11
105	Effect of fluoroethylene carbonate as an electrolyte solvent in the LiNi0.5Mn1.5O4/Li4Ti5O12 cell. Journal of Alloys and Compounds, 2020, 812, 152064.	5.5	11
106	Comparative Studies of Polycrystal and Single-Crystal LiNi _{0.6} Co _{O.2} Mn _{0.2} O ₂ in Terms of Physical and Electrochemical Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 11748-11757.	6.7	11
107	In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels–Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56095-56108.	8.0	11
108	High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Advances, 2016, 6, 107355-107363.	3.6	10

#	Article	IF	Citations
109	Mesoporous Co–CoO@NC Microâ€Disk Derived from ZIFâ€9 as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. ChemistrySelect, 2018, 3, 9276-9283.	1.5	10
110	Ruthenium Oxide Modified alphaâ€Manganese Dioxide Nanotube as Efficient Bifunctional Cathode Catalysts for Lithium Oxygen Batteries. ChemistrySelect, 2019, 4, 7455-7462.	1.5	10
111	Porous calcium–manganese oxide/carbon nanotube microspheres as efficient oxygen reduction catalysts for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2021, 8, 2052-2060.	6.0	10
112	Ruthenium oxide modified hierarchically porous boron-doped graphene aerogels as oxygen electrodes for lithium–oxygen batteries. RSC Advances, 2018, 8, 39829-39836.	3.6	9
113	Enhancing the air stability of LiNi0.6Co0.2Mn0.2O2 cathode through WO3/Li2WO4 surface modification. Journal of Power Sources, 2021, 514, 230605.	7.8	9
114	Comparative performance of LiFePO4 and LiNi0.6Co0.2Mn0.2O2 cathode materials for lithium batteries with solidâ€"liquid hybrid electrolytes. Journal of Power Sources, 2021, 515, 230639.	7.8	9
115	Fast-Charging Anode Materials and Novel Nanocomposite Design of Rice Husk-Derived SiO ₂ and Sn Nanoparticles Self-Assembled on TiO ₂ (B) Nanorods for Lithium-Ion Storage Applications. ACS Omega, 2022, 7, 1357-1367.	3.5	9
116	Synergistic effect of amorphous carbon coverage and enlarged voltage window on the superior lithium storage performance of nanostructured mesoporous anatase TiO2: Emphasis on interfacial storage phenomena. Journal of Alloys and Compounds, 2014, 606, 61-67.	5.5	8
117	Polyaniline-coated partially unzipped vapor-grown carbon fibers/sulfur microsphere composites for Li–S cathodes. Journal of Electroanalytical Chemistry, 2016, 761, 62-67.	3.8	8
118	LiFePO ₄ -coated LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for lithium-ion batteries with enhanced cycling performance at elevated temperatures and high voltages. RSC Advances, 2020, 10, 37916-37922.	3.6	8
119	Enhancement in lithium storage performances of SiO2/graphene-basedÂnanocomposites prepared by low cost and facile approach. Journal of Materials Science: Materials in Electronics, 2022, 33, 6536-6548.	2.2	7
120	A low-temperature coating method with H3BO3 for enhanced electrochemical performance of Ni-rich LiNi0.82Co0.12Mn0.06O2 cathode. Electrochimica Acta, 2022, 422, 140564.	5.2	7
121	Surface-reinforced NCM811 with enhanced electrochemical performance for Li-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165488.	5.5	7
122	Zn–Fe–O@C hollow microspheres as a high performance anode material for lithium-ion batteries. RSC Advances, 2017, 7, 5459-5465.	3.6	6
123	Effects of Co/Mn Content Variation on Structural and Electrochemical Properties of Single-Crystal Ni-Rich Layered Oxide Materials for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24620-24635.	8.0	6
124	Structure and Catalyst Effects on the Electrochemical Performance of Air Electrodes in Lithiumâ€Oxygen Batteries. ChemElectroChem, 2018, 5, 2666-2671.	3.4	5
125	Ultradispersed titanium dioxide nanoparticles embedded in a three-dimensional graphene aerogel for high performance sulfur cathodes. RSC Advances, 2019, 9, 6568-6575.	3.6	5
126	Surface platinum-rich CuPt bimetallic nanoparticles supported by partially unzipped vapor grown carbon fibers and their electrocatalytic activities. RSC Advances, 2014, 4, 29429-29434.	3.6	4

Аі-ѕниі Үи

#	Article	IF	CITATION
127	Facile Synthesis Sandwich-Structured Ge/NrGO Nanocomposite as Anodes for High-Performance Lithium-Ion Batteries. Crystals, 2021, 11, 1582.	2.2	4
128	Transformation of SnS Nanocompisites to Sn and S Nanoparticles during Lithiation. Crystals, 2021, 11, 145.	2.2	3
129	PROPORTIONAL EFFECT IN SbSi/N-DOPED GRAPHENE NANOCOMPOSITE PREPARATION FOR HIGH-PERFORMANCE LITHIUM-ION BATTERIES. Surface Review and Letters, 2021, 28, .	1.1	2
130	A porous Co–Ru@C shell as a bifunctional catalyst for lithium–oxygen batteries. RSC Advances, 2018, 8, 23973-23980.	3.6	1
131	Building well-defined hierarchical nanostructures for sulfur and silicon electrodes. Progress in Natural Science: Materials International, 2019, 29, 672-678.	4.4	1
132	Tetramethylpyrazine: an electrolyte additive for high capacity and energy efficiency lithium–oxygen batteries. RSC Advances, 2021, 11, 24320-24325.	3.6	1