J Simon C Arthur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6288433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. IScience, 2022, 25, 103827.	4.1	51
2	MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells, 2022, 11, 604.	4.1	8
3	Mitogen and Stress-activated Protein Kinase 1 Negatively Regulates Hippocampal Neurogenesis. Neuroscience, 2021, 452, 228-234.	2.3	11
4	Generation of a chemical genetic model for JAK3. Scientific Reports, 2021, 11, 10093.	3.3	5
5	Mitogen and Stress-Activated Kinases 1 and 2 Mediate Endothelial Dysfunction. International Journal of Molecular Sciences, 2021, 22, 8655.	4.1	3
6	Salt-inducible kinases are required for the IL-33–dependent secretion of cytokines and chemokines in mast cells. Journal of Biological Chemistry, 2021, 296, 100428.	3.4	14
7	The devil's in the detail: cell-specific role of PPARÎ ³ in ILC2 activation by IL-33. Mucosal Immunology, 2021, 14, 544-546.	6.0	3
8	Salt inducible kinases 2 and 3 are required for thymic T cell development. Scientific Reports, 2021, 11, 21550.	3.3	9
9	Experience Recruits MSK1 to Expand the Dynamic Range of Synapses and Enhance Cognition. Journal of Neuroscience, 2020, 40, 4644-4660.	3.6	13
10	p38 MAPK signalling regulates cytokine production in IL-33 stimulated Type 2 Innate Lymphoid cells. Scientific Reports, 2020, 10, 3479.	3.3	28
11	Loss of Mef2D function enhances TLR induced IL-10 production in macrophages. Bioscience Reports, 2020, 40, .	2.4	9
12	Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2019, 78, 1363-1370.	0.9	60
13	The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13293-13298.	7.1	102
14	<scp>IL</scp> â€33 regulates cytokine production and neutrophil recruitment via the p38 <scp>MAPK</scp> â€activated kinases <scp>MK</scp> 2/3. Immunology and Cell Biology, 2019, 97, 54-71.	2.3	42
15	Distinct signals and immune cells drive liver pathology and glomerulonephritis in ABIN1[D485N] mice. Life Science Alliance, 2019, 2, e201900533.	2.8	17
16	Differential control of Toll-like receptor 4–induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. Journal of Biological Chemistry, 2018, 293, 2302-2317.	3.4	20
17	ABIN2 Function Is Required To Suppress DSS-Induced Colitis by a Tpl2-Independent Mechanism. Journal of Immunology, 2018, 201, 3373-3382.	0.8	11
18	Dimethyl fumarate is an allosteric covalent inhibitor of the p90 ribosomal S6 kinases. Nature Communications, 2018, 9, 4344.	12.8	28

#	Article	IF	CITATIONS
19	STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathogens, 2018, 14, e1006975.	4.7	62
20	Phosphorylated Histone 3 at Serine 10 Identifies Activated Spinal Neurons and Contributes to the Development of Tissue Injury-Associated Pain. Scientific Reports, 2017, 7, 41221.	3.3	11
21	Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3481-E3489.	7.1	88
22	Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nature Communications, 2017, 8, 15488.	12.8	31
23	MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins. FEBS Open Bio, 2017, 7, 821-834.	2.3	13
24	Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. Journal of Biological Chemistry, 2017, 292, 1762-1772.	3.4	22
25	Inhibition of SIK2 and SIK3 during differentiation enhances the anti-inflammatory phenotype of macrophages. Biochemical Journal, 2017, 474, 521-537.	3.7	57
26	Mitogen- and Stress-Activated Protein Kinase 1 Regulates Status Epilepticus-Evoked Cell Death in the Hippocampus. ASN Neuro, 2017, 9, 175909141772660.	2.7	10
27	P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene, 2017, 36, 6649-6657.	5.9	59
28	A Large Polysaccharide Produced by Helicobacter hepaticus Induces an Anti-inflammatory Gene Signature in Macrophages. Cell Host and Microbe, 2017, 22, 733-745.e5.	11.0	88
29	Identifying Inhibitors of Inflammation: A Novel High-Throughput MALDI-TOF Screening Assay for Salt-Inducible Kinases (SIKs). SLAS Discovery, 2017, 22, 1193-1202.	2.7	46
30	Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Molecular and Cellular Biology, 2017, 37, .	2.3	19
31	The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory. ENeuro, 2017, 4, ENEURO.0212-16.2017.	1.9	20
32	The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen. Oncotarget, 2017, 8, 25418-25432.	1.8	32
33	Stress-induced haematopoietic stem cell proliferation: new roles for p38α and purine metabolism. Stem Cell Investigation, 2016, 3, 64-64.	3.0	5
34	Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Frontiers in Cell and Developmental Biology, 2016, 4, 56.	3.7	76
35	Micro-CT Imaging Reveals Mekk3 Heterozygosity Prevents Cerebral Cavernous Malformations in Ccm2-Deficient Mice. PLoS ONE, 2016, 11, e0160833.	2.5	15
36	The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132. Scientific Reports, 2016, 6, 22848.	3.3	15

#	Article	IF	CITATIONS
37	Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation. Scientific Reports, 2016, 6, 31159.	3.3	89
38	Cerebral cavernous malformations arise from endothelial gain of MEKK3–KLF2/4 signalling. Nature, 2016, 532, 122-126.	27.8	249
39	Suppression of IRAK1 or IRAK4 Catalytic Activity, but Not Type 1 IFN Signaling, Prevents Lupus Nephritis in Mice Expressing a Ubiquitin Binding–Defective Mutant of ABIN1. Journal of Immunology, 2016, 197, 4266-4273.	0.8	46
40	A dominant mutation in <i>MAPKAPK3</i> , an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Human Molecular Genetics, 2016, 25, 916-926.	2.9	13
41	Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome. Learning and Memory, 2016, 23, 61-71.	1.3	93
42	The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development. PLoS ONE, 2016, 11, e0166703.	2.5	7
43	Accelerated apoptotic death and in vivo turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2. Scientific Reports, 2015, 5, 17316.	3.3	49
44	Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Frontiers in Immunology, 2015, 6, 607.	4.8	47
45	The Cerebral Cavernous Malformation Pathway Controls Cardiac Development via Regulation of Endocardial MEKK3 Signaling and KLF Expression. Developmental Cell, 2015, 32, 168-180.	7.0	137
46	Development of Selective Covalent Janus Kinase 3 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6589-6606.	6.4	94
47	Mitogen and stress-activated kinases 1/2 regulate ischemia-induced hippocampal progenitor cell proliferation and neurogenesis. Neuroscience, 2015, 285, 292-302.	2.3	25
48	The Catalytic Subunit of the System L1 Amino Acid Transporter (Slc7a5) Facilitates Nutrient Signalling in Mouse Skeletal Muscle. PLoS ONE, 2014, 9, e89547.	2.5	83
49	Transcriptional Regulation of IL-10 and Its Cell-Specific Role In Vivo. Critical Reviews in Immunology, 2014, 34, 315-345.	O.5	32
50	An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation. Molecular Biology of the Cell, 2014, 25, 904-915.	2.1	35
51	CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochemical Journal, 2014, 458, 469-479.	3.7	123
52	Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology, 2013, 13, 679-692.	22.7	1,375
53	Cooperative Control of Holliday Junction Resolution and DNA Repair by the SLX1 and MUS81-EME1 Nucleases. Molecular Cell, 2013, 52, 221-233.	9.7	132
54	MSK1 and MSK2 Inhibit Lipopolysaccharide-Induced Prostaglandin Production via an Interleukin-10 Feedback Loop. Molecular and Cellular Biology, 2013, 33, 1456-1467.	2.3	38

#	Article	IF	CITATIONS
55	Cross Talk between the Akt and p38î± Pathways in Macrophages Downstream of Toll-Like Receptor Signaling. Molecular and Cellular Biology, 2013, 33, 4152-4165.	2.3	74
56	Mitogen―and stressâ€activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock. European Journal of Neuroscience, 2013, 37, 130-140.	2.6	17
57	IFNβ autocrine feedback is required to sustain TLR induced production of MCPâ€1 in macrophages. FEBS Letters, 2013, 587, 1496-1503.	2.8	24
58	X-ray Crystal Structure of ERK5 (MAPK7) in Complex with a Specific Inhibitor. Journal of Medicinal Chemistry, 2013, 56, 4413-4421.	6.4	29
59	RAS–MAPK–MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature, 2013, 498, 325-331.	27.8	119
60	Longitudinal assessment of endothelial function in the microvasculature of mice in-vivo. Microvascular Research, 2013, 85, 86-92.	2.5	12
61	PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development. EMBO Journal, 2013, 32, 1008-1022.	7.8	32
62	PGE2 Induces Macrophage IL-10 Production and a Regulatory-like Phenotype via a Protein Kinase A–SIK–CRTC3 Pathway. Journal of Immunology, 2013, 190, 565-577.	0.8	197
63	Two Phases of Inflammatory Mediator Production Defined by the Study of IRAK2 and IRAK1 Knock-in Mice. Journal of Immunology, 2013, 191, 2717-2730.	0.8	89
64	Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15247-15252.	7.1	373
65	miR-132/212 Knockout Mice Reveal Roles for These miRNAs in Regulating Cortical Synaptic Transmission and Plasticity. PLoS ONE, 2013, 8, e62509.	2.5	122
66	Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS ONE, 2013, 8, e60086.	2.5	81
67	Pellino1 Is Required for Interferon Production by Viral Double-stranded RNA*. Journal of Biological Chemistry, 2012, 287, 34825-34835.	3.4	33
68	Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16986-16991.	7.1	210
69	Phosphorylation of FOXO3a on Ser-7 by p38 Promotes Its Nuclear Localization in Response to Doxorubicin. Journal of Biological Chemistry, 2012, 287, 1545-1555.	3.4	112
70	Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochemical Journal, 2012, 441, 339-346.	3.7	51
71	Synthesis and structure–activity relationships of a novel series of pyrimidines as potent inhibitors of TBK1/IKKε kinases. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7169-7173.	2.2	40
72	p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11200-11205.	7.1	105

5

#	Article	IF	CITATIONS
73	Met acts through Abl to regulate p53 transcriptional outcomes and cell survival in the developing liver. Journal of Hepatology, 2012, 57, 1292-1298.	3.7	17
74	Inhibition of JAKs in Macrophages Increases Lipopolysaccharide-Induced Cytokine Production by Blocking IL-10–Mediated Feedback. Journal of Immunology, 2012, 189, 2784-2792.	0.8	119
75	MSK1 Regulates Homeostatic and Experience-Dependent Synaptic Plasticity. Journal of Neuroscience, 2012, 32, 13039-13051.	3.6	67
76	Mitogen―and stressâ€activated kinases regulate progenitor cell proliferation and neuron development in the adult dentate gyrus. Journal of Neurochemistry, 2012, 123, 676-688.	3.9	18
77	Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology, 2012, 63, 1227-1237.	4.1	14
78	MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement. Learning and Memory, 2012, 19, 550-560.	1.3	37
79	Characterization of the cellular action of the MSK inhibitor SB-747651A. Biochemical Journal, 2012, 441, 347-357.	3.7	59
80	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
81	Mice Lacking MSK1 and MSK2 Show Reduced Skin Tumor Development in a Two-Stage Chemical Carcinogenesis Model. Cancer Investigation, 2011, 29, 240-245.	1.3	30
82	Polyubiquitin Binding to Optineurin Is Required for Optimal Activation of TANK-binding Kinase 1 and Production of Interferon β. Journal of Biological Chemistry, 2011, 286, 35663-35674.	3.4	152
83	Comparison of the specificity of Trk inhibitors in recombinant and neuronal assays. Neuropharmacology, 2011, 61, 148-155.	4.1	17
84	Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation. Biochemical Journal, 2011, 435, 755-769.	3.7	63
85	The role of mitogen―and stressâ€activated protein kinase 1 and 2 in chronic skin inflammation in mice. Experimental Dermatology, 2011, 20, 140-145.	2.9	19
86	Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. Journal of Experimental Medicine, 2011, 208, 1215-1228.	8.5	146
87	Genetic analysis of specific and redundant roles for p38α and p38β MAPKs during mouse development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12764-12769.	7.1	53
88	Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. Nucleic Acids Research, 2011, 39, 2503-2518.	14.5	54
89	p38α and p38Î ² Mitogen-Activated Protein Kinases Determine Cholinergic Transdifferentiation of Sympathetic Neurons. Journal of Neuroscience, 2011, 31, 12059-12067.	3.6	22
90	Role of p38 Mitogen-activated Protein Kinase Isoforms in Murine Skin Inflammation Induced by 12-O-tetradecanoylphorbol 13-acetate. Acta Dermato-Venereologica, 2011, 91, 271-278.	1.3	12

#	Article	IF	CITATIONS
91	Evidence of p38Î ³ and p38δ involvement in cell transformation processes. Carcinogenesis, 2011, 32, 1093-1099.	2.8	26
92	Indirect Inhibition of Toll-like Receptor and Type I Interferon Responses by ITAM-Coupled Receptors and Integrins. Immunity, 2010, 32, 518-530.	14.3	127
93	GPR55 ligands promote receptor coupling to multiple signalling pathways. British Journal of Pharmacology, 2010, 160, 604-614.	5.4	171
94	The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. Journal of Clinical Investigation, 2010, 120, 2457-2473.	8.2	343
95	Regulation of miRNA Transcription in Macrophages in Response to Candida albicans. PLoS ONE, 2010, 5, e13669.	2.5	106
96	MSK1 regulates the transcription of IL-1ra in response to TLR activation in macrophages. Biochemical Journal, 2010, 425, 595-602.	3.7	41
97	p38Î ³ regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock. Journal of Cell Science, 2010, 123, 2596-2604.	2.0	21
98	Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochemical Journal, 2010, 428, 281-291.	3.7	195
99	ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis. Biochemical and Biophysical Research Communications, 2010, 399, 84-90.	2.1	15
100	The activation of p38alpha, and not p38beta, mitogen-activated protein kinase is required for ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2010, 48, 1324-1328.	1.9	29
101	RIG-I-mediated Activation of p38 MAPK Is Essential for Viral Induction of Interferon and Activation of Dendritic Cells. Journal of Biological Chemistry, 2009, 284, 10774-10782.	3.4	104
102	p38δ Mitogen-Activated Protein Kinase Is Essential for Skin Tumor Development in Mice. Cancer Research, 2009, 69, 4648-4655.	0.9	72
103	Generation of a conditional CREB Ser133Ala knockin mouse. Genesis, 2009, 47, 688-696.	1.6	23
104	ERK5 regulation in naÃ⁻ve Tâ€cell activation and survival. European Journal of Immunology, 2008, 38, 2534-2547.	2.9	21
105	The kinase p38α serves cell type–specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nature Immunology, 2008, 9, 1019-1027.	14.5	250
106	The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nature Immunology, 2008, 9, 1028-1036.	14.5	297
107	The forced swimmingâ€induced behavioural immobility response involves histone H3 phosphoâ€acetylation and câ€Fos induction in dentate gyrus granule neurons via activation of the <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate/extracellular signalâ€regulated kinase/mitogen―and stressâ€activated kinase signalling pathway. European lournal of Neuroscience. 2008. 27. 2701-2713.	2.6	176
108	Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochemical Journal, 2008, 409, 711-722.	3.7	59

#	Article	IF	CITATIONS
109	MSK activation and physiological roles. Frontiers in Bioscience - Landmark, 2008, Volume, 5866.	3.0	142
110	The selectivity of protein kinase inhibitors: a further update. Biochemical Journal, 2007, 408, 297-315.	3.7	2,287
111	The Nuclear Kinase Mitogen- and Stress-Activated Protein Kinase 1 Regulates Hippocampal Chromatin Remodeling in Memory Formation. Journal of Neuroscience, 2007, 27, 12732-12742.	3.6	211
112	Identification of novel phosphorylation sites in MSK1 by precursor ion scanning MS. Biochemical Journal, 2007, 402, 491-501.	3.7	52
113	MAPK activation by radio waves. Biochemical Journal, 2007, 405, e5-6.	3.7	5
114	MSK regulate TCRâ€induced CREB phosphorylation but not immediate early gene transcription. European Journal of Immunology, 2007, 37, 2583-2595.	2.9	26
115	The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunology, 2007, 8, 1227-1235.	14.5	128
116	Post-translational control of Nur77. Biochemical Society Transactions, 2006, 34, 1107-1109.	3.4	34
117	Nur77 is phosphorylated in cells by RSK in response to mitogenic stimulation. Biochemical Journal, 2006, 393, 715-724.	3.7	84
118	Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biology, 2006, 7, 1.	3.0	174
119	m-Calpain is required for preimplantation embryonic development in mice. BMC Developmental Biology, 2006, 6, 3.	2.1	130
120	Glutamate induces histone H3 phosphorylation but not acetylation in striatal neurons: role of mitogen- and stress-activated kinase-1. Journal of Neurochemistry, 2006, 101, 697-708.	3.9	60
121	C-terminal phosphorylation controls the stability and function of p27kip1. EMBO Journal, 2006, 25, 5159-5170.	7.8	69
122	Signaling Downstream of p38 in Psoriasis. Journal of Investigative Dermatology, 2006, 126, 1689-1691.	0.7	23
123	CXCL12 and C5a trigger cell migration via a PAK1/2-p38αÂMAPK-MAPKAP-K2-HSP27 pathway. Cellular Signalling, 2006, 18, 1897-1905.	3.6	116
124	Posttranslational Regulation of Tristetraprolin Subcellular Localization and Protein Stability by p38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinase Pathways. Molecular and Cellular Biology, 2006, 26, 2408-2418.	2.3	238
125	Evaluation of Approaches to Generation of Tissue-specific Knock-in Mice. Journal of Biological Chemistry, 2006, 281, 28772-28781.	3.4	34
126	Activation of the Mitogen- and Stress-activated Kinase 1 by Arsenic Trioxide. Journal of Biological Chemistry, 2006, 281, 22446-22452.	3.4	55

#	Article	IF	CITATIONS
127	The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated protein kinases triggers its dissociation from CapZ. Biochemical Journal, 2005, 389, 127-135.	3.7	60
128	MSK1 activity is controlled by multiple phosphorylation sites. Biochemical Journal, 2005, 387, 507-517.	3.7	148
129	MSKs are required for the transcription of the nuclear orphan receptors <i>Nur77</i> , <i>Nur1</i> and <i>Nor1</i> downstream of MAPK signalling. Biochemical Journal, 2005, 390, 749-759.	3.7	106
130	p38Î ³ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO Journal, 2005, 24, 1134-1145.	7.8	221
131	MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. Journal of Cell Science, 2005, 118, 2247-2259.	2.0	101
132	Generation and Characterization of p38β (MAPK11) Gene-Targeted Mice. Molecular and Cellular Biology, 2005, 25, 10454-10464.	2.3	225
133	Parsing Molecular and Behavioral Effects of Cocaine in Mitogen- and Stress-Activated Protein Kinase-1-Deficient Mice. Journal of Neuroscience, 2005, 25, 11444-11454.	3.6	263
134	Insulin-Stimulated Glucose Uptake Does Not Require p38 Mitogen-Activated Protein Kinase in Adipose Tissue or Skeletal Muscle. Diabetes, 2005, 54, 3161-3168.	0.6	23
135	Signaling Pathways and Genes that Inhibit Pathogen-Induced Macrophage Apoptosis— CREB and NF-κB as Key Regulators. Immunity, 2005, 23, 319-329.	14.3	289
136	Mitogen- and Stress-Activated Protein Kinase 1 Mediates cAMP Response Element-Binding Protein Phosphorylation and Activation by Neurotrophins. Journal of Neuroscience, 2004, 24, 4324-4332.	3.6	188
137	The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO Journal, 2004, 23, 2071-2082.	7.8	131
138	Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones. Journal of Neurochemistry, 2004, 86, 25-32.	3.9	42
139	A novel UBA and UBX domain protein that binds polyubiquitin and VCP and is a substrate for SAPKs. Biochemical Journal, 2004, 384, 391-400.	3.7	61
140	MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO Journal, 2003, 22, 2788-2797.	7.8	441
141	The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Molecular Biology, 2003, 4, 6.	3.0	49
142	Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Developmental Biology, 2003, 3, 11.	2.1	114
143	A second binding site revealed by C-terminal truncation of calpain small subunit, a penta-EF-hand protein. Proteins: Structure, Function and Bioinformatics, 2003, 53, 649-655.	2.6	8
144	In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO Journal, 2003, 22, 4202-4211.	7.8	166

#	Article	IF	CITATIONS
145	MSK1 and MSK2 Are Required for the Mitogen- and Stress-Induced Phosphorylation of CREB and ATF1 in Fibroblasts. Molecular and Cellular Biology, 2002, 22, 2871-2881.	2.3	417
146	Reduced Cell Migration and Disruption of the Actin Cytoskeleton in Calpain-deficient Embryonic Fibroblasts. Journal of Biological Chemistry, 2001, 276, 48382-48388.	3.4	215
147	Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth. Journal of Biological Chemistry, 2001, 276, 19469-19482.	3.4	234
148	Roles of individual EF-hands in the activation of m-calpain by calcium. Biochemical Journal, 2000, 348, 37.	3.7	20
149	The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Current Biology, 2000, 10, 439-448.	3.9	434
150	Calpain Zymography with Casein or Fluorescein Isothiocyanate Casein. , 2000, 144, 109-116.		51
151	Fluorescence Measurements of Ca ²⁺ Binding to Domain VI of Calpain. , 2000, 144, 121-127.		1
152	Disruption of the Murine Calpain Small Subunit Gene, Capn4 : Calpain Is Essential for Embryonic Development but Not for Cell Growth and Division. Molecular and Cellular Biology, 2000, 20, 4474-4481.	2.3	306
153	MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Letters, 2000, 482, 44-48.	2.8	175
154	Crystallization and X-ray crystallographic analysis of m-calpain, a Ca2+-dependent protease. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1484-1486.	2.5	17
155	Structure of the mouse calpain small subunit gene. BBA - Proteins and Proteomics, 1998, 1388, 247-252.	2.1	15
156	m -Calpain subunits remain associated in the presence of calcium. FEBS Letters, 1998, 436, 367-371.	2.8	25
157	The effects of truncations of the small subunit on m-calpain activity and heterodimer formation. Biochemical Journal, 1997, 326, 31-38.	3.7	53
158	Autolysis, Ca2+ Requirement, and Heterodimer Stability in m-Calpain. Journal of Biological Chemistry, 1997, 272, 11268-11275.	3.4	90
159	Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nature Structural Biology, 1997, 4, 532-538.	9.7	192
160	Interaction of aspartic acid-104 and proline-287 with the active site of m-calpain. Biochemical Journal, 1996, 319, 535-541.	3.7	9
161	Investigation of the interaction of m-calpain with phospholipids: calpain-phospholipid interactions. BBA - Proteins and Proteomics, 1996, 1293, 201-206.	2.1	52
162	Ca ²⁺ â€Binding domain VI of rat calpain is a homodimer in solution: Hydrodynamic, crystallization and preliminary Xâ€ray diffraction studies. Protein Science, 1996, 5, 535-537.	7.6	31

#	Article	IF	CITATIONS
163	Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Letters, 1995, 368, 397-400.	2.8	56