Jeong Young Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6287078/publications.pdf Version: 2024-02-01

		22153	22166
305	15,587	59	113
papers	citations	h-index	g-index
322	322	322	18603
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhancing the inherent catalytic activity and stability of TiO ₂ supported Pt single-atoms at CeO _{<i>x</i>} –TiO ₂ interfaces. Journal of Materials Chemistry A, 2022, 10, 5942-5952.	10.3	7
2	Revealing Pt-seed-induced structural effects to tribological/electrical/thermoelectric modulations in two-dimensional PtSe2 using scanning probe microscopy. Nano Energy, 2022, 91, 106693.	16.0	9
3	Trioctylphosphine Oxide (TOPO)-Assisted Facile Fabrication of Phosphorus-Incorporated Nanostructured Carbon Nitride Toward Photoelectrochemical Water Splitting with Enhanced Activity. Inorganic Chemistry, 2022, 61, 1368-1376.	4.0	10
4	Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties. Carbon, 2022, 193, 42-50.	10.3	15
5	Enhanced hydrogenation conversion efficiency of porous nickel particles with homogeneously distributed unimodal nanopores. Scripta Materialia, 2022, 216, 114761.	5.2	0
6	Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Research, 2022, 15, 10357-10365.	10.4	14
7	Synergistic interactions between water and the metal/oxide interface in CO oxidation on Pt/CeO2 model catalysts. Catalysis Today, 2022, , .	4.4	3
8	Direct Observation of Atomic-Scale Cliding on Hydrophilic Surfaces. Journal of Physical Chemistry Letters, 2022, 13, 6612-6618.	4.6	0
9	Relaxation Dynamics of Enhanced Hot-Electron Flow on Perovskite-Coupled Plasmonic Silver Schottky Nanodiodes. Journal of Physical Chemistry C, 2021, 125, 2575-2582.	3.1	7
10	Hydrogenation of diamond nanowire surfaces for effective electrostatic charge storage. Nanoscale, 2021, 13, 7308-7321.	5.6	4
11	Cu oxide deposited on shape-controlled ceria nanocrystals for CO oxidation: influence of interface-driven oxidation states on catalytic activity. Catalysis Science and Technology, 2021, 11, 6134-6142.	4.1	19
12	The facet effect of ceria nanoparticles on platinum dispersion and catalytic activity of methanol partial oxidation. Chemical Communications, 2021, 57, 7382-7385.	4.1	16
13	In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy. Journal of Physical Chemistry C, 2021, 125, 6909-6915.	3.1	8
14	Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography. Nanotechnology, 2021, 32, 225203.	2.6	8
15	Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catalysis, 2021, 11, 8645-8677.	11.2	39
16	Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catalysis, 2021, 11, 10767-10777.	11.2	28
17	Surface chemistry of hot electron and metal-oxide interfaces. Surface Science Reports, 2021, 76, 100532.	7.2	16
18	Breaking the inverse relationship between catalytic activity and selectivity in acetylene partial hydrogenation using dynamic metal–polymer interaction. Journal of Catalysis, 2021, 404, 716-725.	6.2	8

#	Article	IF	CITATIONS
19	Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane dehydrogenation. Journal of Catalysis, 2021, 404, 760-770.	6.2	16
20	Coverage of capping ligands determining the selectivity of multi-carbon products and morphological evolution of Cu nanocatalysts in electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2021, 9, 11210-11218.	10.3	8
21	Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. Nature Communications, 2021, 12, 40.	12.8	20
22	Continuous 3D-nanopatterned Ni–Mo solid solution as a free-standing electrocatalyst for the hydrogen evolution reaction in alkaline medium. Journal of Materials Chemistry A, 2021, 9, 7767-7773.	10.3	17
23	Influence of lattice oxygen on the catalytic activity of blue titania supported Pt catalyst for CO oxidation. Catalysis Science and Technology, 2021, 11, 1698-1708.	4.1	18
24	Revealing Charge Transfer at the Interface of Spinel Oxide and Ceria during CO Oxidation. ACS Catalysis, 2021, 11, 1516-1527.	11.2	20
25	Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal–Semiconductor Nanodiodes. ACS Applied Materials & Interfaces, 2021, 13, 9252-9259.	8.0	17
26	Atomic scale friction properties of confined water layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	3
27	Atomicâ€6cale Observations of the Manganese Porphyrin/Au Catalyst Interface Under the Electrocatalytic Process Revealed with Electrochemical Scanning Tunneling Microscopy. Advanced Materials Interfaces, 2021, 8, 2100873.	3.7	6
28	Atomicâ€Scale Observations of the Manganese Porphyrin/Au Catalyst Interface Under the Electrocatalytic Process Revealed with Electrochemical Scanning Tunneling Microscopy (Adv. Mater.) Tj ETQq0 0	0 හg⁄BT /O	vendock 10 Tf
29	Operando observations of reactive metal–Oxide structure formation on the Pt3Ni(111) surface at near-ambient pressure. Journal of Electron Spectroscopy and Related Phenomena, 2020, 238, 146857.	1.7	6
30	Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation. ACS Nano, 2020, 14, 676-687.	14.6	10
31	Plasmonâ€Induced Hot Carrier Separation across Dual Interface in Gold–Nickel Phosphide Heterojunction for Photocatalytic Water Splitting. Advanced Functional Materials, 2020, 30, 1908239.	14.9	43
32	A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy and Environmental Science, 2020, 13, 1231-1239.	30.8	140
33	Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr ₃ Surfaces. Journal of Physical Chemistry C, 2020, 124, 1484-1491.	3.1	15
34	High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catalysis Today, 2020, 352, 212-219.	4.4	20
35	Nanotribological Effect of Water Layers Intercalated between Exfoliated MoS ₂ and Mica. Journal of Physical Chemistry C, 2020, 124, 16902-16907.	3.1	12
36	<i>Operando</i> Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS Nano, 2020, 14, 16392-16413.	14.6	24

#	Article	IF	CITATIONS
37	In Situ Visualization of Localized Surface Plasmon Resonanceâ€Driven Hot Hole Flux. Advanced Science, 2020, 7, 2001148.	11.2	24
38	Oxide chemistry and catalysis. Journal of Chemical Physics, 2020, 153, 050401.	3.0	1
39	Troponin Aptamer on an Atomically Flat Au Nanoplate Platform for Detection of Cardiac Troponin I. Nanomaterials, 2020, 10, 1402.	4.1	15
40	Enhanced charge storage properties of ultrananocrystalline diamond films by contact electrification-induced hydrogenation. RSC Advances, 2020, 10, 33189-33195.	3.6	1
41	Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide. Nanoscale Advances, 2020, 2, 4410-4416.	4.6	6
42	Catalytic Synergy on PtNi Bimetal Catalysts Driven by Interfacial Intermediate Structures. ACS Catalysis, 2020, 10, 10459-10467.	11.2	53
43	A combined experimental and theoretical approach revealing a direct mechanism for bifunctional water splitting on doped copper phosphide. Nanoscale, 2020, 12, 17769-17779.	5.6	21
44	Role of Oxygen in Two-Step Thermal Annealing Processes for Enhancing the Performance of Colloidal Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 57840-57846.	8.0	7
45	How Rh surface breaks CO2 molecules under ambient pressure. Nature Communications, 2020, 11, 5649.	12.8	24
46	Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy, 2020, 75, 104904.	16.0	105
47	Engineering Nanoscale Interfaces of Metal/Oxide Nanowires to Control Catalytic Activity. ACS Nano, 2020, 14, 8335-8342.	14.6	22
48	Plasmonic–Catalytic Nanomaterials: Plasmonâ€Induced Hot Carrier Separation across Dual Interface in Gold–Nickel Phosphide Heterojunction for Photocatalytic Water Splitting (Adv. Funct. Mater.) Tj ETQq0 0 0 rgl	BT ‡Q9 erlo	cka10 Tf 50 2
49	Restructuring of Porphyrin Networks Driven by Self-Assembled Octanoic Acid Monolayer on Au(111). Langmuir, 2020, 36, 3792-3797.	3.5	10
50	Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions. MRS Bulletin, 2020, 45, 26-31.	3.5	11
51	Dynamic friction behavior of ultrananocrystalline diamond films: A depth-resolved chemical phase analysis. Ceramics International, 2019, 45, 23418-23422.	4.8	4
52	Intrinsic Relation between Hot Electron Flux and Catalytic Selectivity during Methanol Oxidation. ACS Catalysis, 2019, 9, 8424-8432.	11.2	15
53	Atomic-scale view of stability and degradation of single-crystal MAPbBr ₃ surfaces. Journal of Materials Chemistry A, 2019, 7, 20760-20766.	10.3	46
54	The effect of the oxidation states of supported oxides on catalytic activity: CO oxidation studies on Pt/cobalt oxide. Chemical Communications, 2019, 55, 9503-9506.	4.1	28

#	Article	IF	CITATIONS
55	Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. Journal of Catalysis, 2019, 376, 68-76.	6.2	50
56	Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode. Nano Letters, 2019, 19, 5489-5495.	9.1	38
57	Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO ₂ nanodiode. RSC Advances, 2019, 9, 18371-18376.	3.6	38
58	Height determination of single-layer graphene on mica at controlled humidity using atomic force microscopy. Review of Scientific Instruments, 2019, 90, .	1.3	14
59	Ferroelectricâ€Polymerâ€Enabled Contactless Electric Power Generation in Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1905816.	14.9	41
60	Influence of carbon doping concentration on photoelectrochemical activity of TiO2 nanotube arrays under water oxidation. Catalysis Science and Technology, 2019, 9, 688-694.	4.1	17
61	Enhanced hot electron generation by inverse metal–oxide interfaces on catalytic nanodiode. Faraday Discussions, 2019, 214, 353-364.	3.2	13
62	Defective Nb2O5-supported Pt catalysts for CO oxidation: Promoting catalytic activity via oxygen vacancy engineering. Journal of Catalysis, 2019, 375, 124-134.	6.2	70
63	Two-dimensional FeS ₂ -encapsulated Au: a quasi-epitaxial heterojunction for synergistic catalytic activity under photoelectrocatalytic water reduction. Journal of Materials Chemistry A, 2019, 7, 19258-19268.	10.3	16
64	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	3.2	5
65	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
66	Influence of Support Acidity of Pt/Nb2O5 Catalysts on Selectivity of CO2 Hydrogenation. Catalysis Letters, 2019, 149, 2823-2835.	2.6	24
67	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	3.2	21
68	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
69	Hot electron-driven electrocatalytic hydrogen evolution reaction on metal–semiconductor nanodiode electrodes. Scientific Reports, 2019, 9, 6208.	3.3	10
70	Hydrogen production by water reduction on Si photocathode coupled with Ni2P. International Journal of Hydrogen Energy, 2019, 44, 7241-7251.	7.1	8
71	Nanoscale Friction on Confined Water Layers Intercalated between MoS ₂ Flakes and Silica. Journal of Physical Chemistry C, 2019, 123, 8827-8835.	3.1	36
72	Nanoscale investigation of improved triboelectric properties of UV-irradiated ultrananocrystalline diamond films. Nanoscale, 2019, 11, 6120-6128.	5.6	10

#	Article	IF	CITATIONS
73	Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO ₂ Schottky Nanodiodes. ACS Applied Materials & Interfaces, 2019, 11, 15152-15159.	8.0	14
74	Influence of hydrogen incorporation on conductivity and work function of VO ₂ nanowires. Nanoscale, 2019, 11, 4219-4225.	5.6	9
75	Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. Journal of Chemical Physics, 2019, 151, 234716.	3.0	37
76	Charge Transfer during the Aluminum–Water Reaction Studied with Schottky Nanodiode Sensors. ACS Omega, 2019, 4, 20838-20843.	3.5	7
77	Water-Assisted Growth of Cobalt Oxide and Cobalt Hydroxide Overlayers on the Pt ₃ Co(111) Surface. ACS Applied Energy Materials, 2019, 2, 8580-8586.	5.1	13
78	Boron-Doped Nanocrystalline Diamond–Carbon Nanospike Hybrid Electron Emission Source. ACS Applied Materials & Interfaces, 2019, 11, 48612-48623.	8.0	13
79	Facile Tuning of Metal/Oxide Interface in Hollow Nanoreactor Affecting Catalytic Activity and Selectivity. Catalysis Letters, 2019, 149, 119-126.	2.6	5
80	Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO ₂ . Nano Letters, 2019, 19, 891-896.	9.1	72
81	Nitrogen ion implanted ultrananocrystalline diamond films: A better electrostatic charge storage medium. Carbon, 2019, 141, 123-133.	10.3	7
82	In Situ Observation of Competitive CO and O ₂ Adsorption on the Pt(111) Surface Using Near-Ambient Pressure Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2018, 122, 6246-6254.	3.1	16
83	Reversible Oxygenâ€Driven Nickel Oxide Structural Transition on the Nickel(1 1 1) Surface at Nearâ€Am Pressure. ChemCatChem, 2018, 10, 2046-2050.	bient	9
84	Synthesis of High Surface Area TiO2 Aerogel Support with Pt Nanoparticle Catalyst and CO Oxidation Study. Catalysis Letters, 2018, 148, 1504-1513.	2.6	11
85	The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu ₂ 0/hexoctahedral Au inverse catalyst. Nanoscale, 2018, 10, 10835-10843.	5.6	35
86	Reduced Graphene Oxide as a Catalyst Binder: Greatly Enhanced Photoelectrochemical Stability of Cu(In,Ca)Se ₂ Photocathode for Solar Water Splitting. Advanced Functional Materials, 2018, 28, 1705136.	14.9	46
87	Columnar-Structured Low-Concentration Donor Molecules in Bulk Heterojunction Organic Solar Cells. ACS Omega, 2018, 3, 929-936.	3.5	12
88	Isotope- and Thickness-Dependent Friction of Water Layers Intercalated Between Graphene and Mica. Tribology Letters, 2018, 66, 1.	2.6	24
89	Enhanced catalytic activity for CO oxidation by the metal–oxide perimeter of TiO ₂ /nanostructured Au inverse catalysts. Nanoscale, 2018, 10, 3911-3917.	5.6	22
90	Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots. ACS Applied Materials & Interfaces, 2018, 10, 5081-5089.	8.0	20

#	Article	IF	CITATIONS
91	In Situ Observations of UV-Induced Restructuring of Self-Assembled Porphyrin Monolayer on Liquid/Au(111) Interface at Molecular Level. Langmuir, 2018, 34, 6003-6009.	3.5	11
92	Hydrogen Generation on Metal/Mesoporous Oxides: The Effects of Hierarchical Structure, Doping, and Co atalysts. Energy Technology, 2018, 6, 459-469.	3.8	32
93	Hot electron flux at solid–liquid interfaces probed with Pt/Si catalytic nanodiodes: Effects of pH during decomposition of hydrogen peroxide. Catalysis Today, 2018, 303, 282-288.	4.4	16
94	The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction. Journal of Physical Chemistry B, 2018, 122, 543-547.	2.6	27
95	Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation. Nano Energy, 2018, 43, 244-252.	16.0	57
96	Self-organized multi-layered graphene–boron-doped diamond hybrid nanowalls for high-performance electron emission devices. Nanoscale, 2018, 10, 1345-1355.	5.6	57
97	Compositional effect of two-dimensional monodisperse AuPd bimetallic nanoparticle arrays fabricated by block copolymer nanopatterning on catalytic activity of CO oxidation. Chemical Communications, 2018, 54, 13734-13737.	4.1	8
98	Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO ₂ nanotube arrays. Nanoscale, 2018, 10, 22180-22188.	5.6	79
99	Ambient-pressure atomic force microscope with variable pressure from ultra-high vacuum up to one bar. Review of Scientific Instruments, 2018, 89, 103701.	1.3	9
100	Graphene Fibers: Musselâ€Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity (Adv. Mater. 40/2018). Advanced Materials, 2018, 30, 1870298.	21.0	4
101	Area-Selective Atomic Layer Deposition Using Si Precursors as Inhibitors. Chemistry of Materials, 2018, 30, 7603-7610.	6.7	78
102	Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials, 2018, 8, 653.	4.1	7
103	Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode. ACS Photonics, 2018, 5, 3499-3506.	6.6	19
104	Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation. Topics in Catalysis, 2018, 61, 915-922.	2.8	8
105	Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation. Chemical Communications, 2018, 54, 8968-8971.	4.1	12
106	Hot electron generation on metal catalysts under surface reaction: Principles, devices, and application. Chinese Chemical Letters, 2018, 29, 727-733.	9.0	6
107	MOFâ€Derived Bifunctional Iron Oxide and Iron Phosphide Nanoarchitecture Photoelectrode for Neutral Water Splitting. ChemElectroChem, 2018, 5, 2842-2849.	3.4	33
108	Adsorbate-driven reactive interfacial Pt-NiO _{1â^' <i>x</i>} nanostructure formation on the Pt ₃ Ni(111) alloy surface. Science Advances, 2018, 4, eaat3151.	10.3	76

#	Article	IF	CITATIONS
109	Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes. Scientific Reports, 2018, 8, 7330.	3.3	23
110	How titanium dioxide cleans itself. Science, 2018, 361, 753-753.	12.6	27
111	Musselâ€Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity. Advanced Materials, 2018, 30, e1803267.	21.0	67
112	Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nature Communications, 2018, 9, 2235.	12.8	80
113	Iron-doped ZnO as a support for Pt-based catalysts to improve activity and stability: enhancement of metal–support interaction by the doping effect. RSC Advances, 2018, 8, 21528-21533.	3.6	18
114	Effect of the metal–support interaction on the activity and selectivity of methanol oxidation over Au supported on mesoporous oxides. Chemical Communications, 2018, 54, 8174-8177.	4.1	20
115	Bacterial Nanoâ€Cellulose Triboelectric Nanogenerator. Nano Energy, 2017, 33, 130-137.	16.0	214
116	Mechanistic Insight into the Conversion Chemistry between Au-CuO Heterostructured Nanocrystals Confined inside SiO ₂ Nanospheres. Chemistry of Materials, 2017, 29, 1788-1795.	6.7	19
117	EEWS 2016: Progress and Perspectives of Energy Science and Technology. ACS Energy Letters, 2017, 2, 592-594.	17.4	0
118	Transfer-printable micropatterned fluoropolymer-based triboelectric nanogenerator. Nano Energy, 2017, 36, 126-133.	16.0	58
119	Non-Colloidal Nanocatalysts Fabricated Using Arc Plasma Deposition and Their Application in Heterogenous Catalysis and Photocatalysis. Topics in Catalysis, 2017, 60, 812-822.	2.8	14
120	Nanospace-Confined High-Temperature Solid-State Reactions: Versatile Synthetic Route for High-Diversity Pool of Catalytic Nanocrystals. Chemistry of Materials, 2017, 29, 9463-9471.	6.7	23
121	Probing surface oxide formations on SiO ₂ -supported platinum nanocatalysts under CO oxidation. RSC Advances, 2017, 7, 45003-45009.	3.6	26
122	Extremely high electrical conductance of microporous 3D graphene-like zeolite-templated carbon framework. Scientific Reports, 2017, 7, 11460.	3.3	23
123	Surfactant-Free Vapor-Phase Synthesis of Single-Crystalline Gold Nanoplates for Optimally Bioactive Surfaces. Chemistry of Materials, 2017, 29, 8747-8756.	6.7	23
124	Hot plasmonic electron-driven catalytic reactions on patterned metal–insulator–metal nanostructures. Nanoscale, 2017, 9, 11667-11677.	5.6	12
125	Strategies for Hot Electron-Mediated Catalytic Reactions: Catalytronics. Catalysis Letters, 2017, 147, 1851-1860.	2.6	12
126	Nanoscale investigation of enhanced electron field emission for silver ion implanted/post-annealed ultrananocrystalline diamond films. Scientific Reports, 2017, 7, 16325.	3.3	18

#	Article	IF	CITATIONS
127	Enhancement of Friction by Water Intercalated between Graphene and Mica. Journal of Physical Chemistry Letters, 2017, 8, 3482-3487.	4.6	57
128	Nature of Active Sites and Their Quantitative Measurement in Two-Dimensional Pt Metal Catalysts. Catalysis Letters, 2017, 147, 39-45.	2.6	13
129	Seamlessly Conductive 3D Nanoarchitecture of Core–Shell Ni o Nanowire Network for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1601492.	19.5	260
130	Surface plasmon-driven catalytic reactions on a patterned Co ₃ O ₄ /Au inverse catalyst. RSC Advances, 2017, 7, 56073-56080.	3.6	13
131	Silk Nanofiberâ€Networked Bioâ€Triboelectric Generator: Silk Bioâ€TEG. Advanced Energy Materials, 2016, 6, 1502329.	19.5	222
132	Crossing Thermal Lubricity and Electronic Effects in Friction: Vanadium Dioxide under the Metal–Insulator Transition. Advanced Materials Interfaces, 2016, 3, 1500388.	3.7	13
133	Local conductance mapping of water-intercalated graphene on mica. Applied Physics Letters, 2016, 109, 241602.	3.3	6
134	Postsynthesis Modulation of the Catalytic Interface inside a Hollow Nanoreactor: Exploitation of the Bidirectional Behavior of Mixed-Valent Mn ₃ O ₄ Phase in the Galvanic Replacement Reaction. Chemistry of Materials, 2016, 28, 9049-9055.	6.7	21
135	Enhanced triboelectrification of the polydimethylsiloxane surface by ultraviolet irradiation. Applied Physics Letters, 2016, 108, .	3.3	32
136	Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence. Review of Scientific Instruments, 2016, 87, 114101.	1.3	10
137	A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials, 2016, 8, e262-e262.	7.9	15
138	Charge transport-driven selective oxidation of graphene. Nanoscale, 2016, 8, 11494-11502.	5.6	9
139	Ultraflat Au nanoplates as a new building block for molecular electronics. Nanotechnology, 2016, 27, 215601.	2.6	11
140	The effect of hot electrons and surface plasmons on heterogeneous catalysis. Journal of Physics Condensed Matter, 2016, 28, 254002.	1.8	48
141	Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes. Journal of Physics Condensed Matter, 2016, 28, 254006.	1.8	22
142	Titelbild: Hot Electrons at Solid–Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide (Angew. Chem. 36/2016). Angewandte Chemie, 2016, 128, 10681-10681.	2.0	0
143	Hot Electrons at Solid–Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2016, 55, 10859-10862.	13.8	20
144	Synergetic effects of edge formation and sulfur doping on the catalytic activity of a graphene-based catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 14400-14407.	10.3	30

#	Article	IF	CITATIONS
145	Photocatalytic activity of metal-decorated SiO2@TiO2 hybrid photocatalysts under water splitting. Korean Journal of Chemical Engineering, 2016, 33, 2325-2329.	2.7	16
146	Work function engineering of SnO single crystal microplates with thermal annealing. Nanotechnology, 2016, 27, 335603.	2.6	13
147	Hot Electrons at Solid–Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide. Angewandte Chemie, 2016, 128, 11017-11020.	2.0	18
148	Bimodal Control of Heat Transport at Graphene–Metal Interfaces Using Disorder in Graphene. Scientific Reports, 2016, 6, 34428.	3.3	7
149	Reply to "Comment on â€~Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities'― ACS Nano, 2016, 10, 9057-9060.	14.6	0
150	Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes. Scientific Reports, 2016, 6, 27549.	3.3	34
151	Pt/oxide nanocatalysts synthesized via the ultrasonic spray pyrolysis process: engineering metal–oxide interfaces for enhanced catalytic activity. Research on Chemical Intermediates, 2016, 42, 211-222.	2.7	2
152	Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535, 131-135.	27.8	253
153	Hot Electron Surface Chemistry at Oxide–Metal Interfaces: Foundation of Acid-base Catalysis. Catalysis Letters, 2016, 146, 1-11.	2.6	33
154	Friction and conductance imaging of sp ² - and sp ³ -hybridized subdomains on single-layer graphene oxide. Nanoscale, 2016, 8, 4063-4069.	5.6	34
155	Photocatalytic H ₂ generation on macro-mesoporous oxide-supported Pt nanoparticles. RSC Advances, 2016, 6, 18198-18203.	3.6	14
156	Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon, 2016, 101, 449-457.	10.3	115
157	Tailoring metal–oxide interfaces of oxide-encapsulated Pt/silica hybrid nanocatalysts with enhanced thermal stability. Catalysis Today, 2016, 265, 245-253.	4.4	28
158	The nature of hot electrons generated by exothermic catalytic reactions. Chemical Physics Letters, 2016, 645, 5-14.	2.6	26
159	Thermal Evolution and Instability of CO-Induced Platinum Clusters on the Pt(557) Surface at Ambient Pressure. Journal of the American Chemical Society, 2016, 138, 1110-1113.	13.7	28
160	Graphene–Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction. Nano Letters, 2016, 16, 1650-1656.	9.1	37
161	Charge Transport in Self-Assembled Monolayers. , 2016, , 506-513.		0
162	Organic Solar Cells: Enhancing the Internal Quantum Efficiency and Stability of Organic Solar Cells via Metallic Nanofunnels (Adv. Energy Mater. 24/2015). Advanced Energy Materials, 2015, 5, .	19.5	0

#	Article	IF	CITATIONS
163	Enhancing the Internal Quantum Efficiency and Stability of Organic Solar Cells via Metallic Nanofunnels. Advanced Energy Materials, 2015, 5, 1501393.	19.5	29
164	Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Applied Surface Science, 2015, 354, 347-352.	6.1	44
165	Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities. ACS Nano, 2015, 9, 7343-7351.	14.6	122
166	Amplification of hot electron flow by the surface plasmon effect on metal–insulator–metal nanodiodes. Nanotechnology, 2015, 26, 445201.	2.6	16
167	Titania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts. Catalysis Letters, 2015, 145, 930-938.	2.6	3
168	Chemicalâ€Reactionâ€Induced Hot Electron Flows on Platinum Colloid Nanoparticles under Hydrogen Oxidation: Impact of Nanoparticle Size. Angewandte Chemie - International Edition, 2015, 54, 2340-2344.	13.8	57
169	Frontispiece: Chemical-Reaction-Induced Hot Electron Flows on Platinum Colloid Nanoparticles under Hydrogen Oxidation: Impact of Nanoparticle Size. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
170	Chemicalâ€Reactionâ€Induced Hot Electron Flows on Platinum Colloid Nanoparticles under Hydrogen Oxidation: Impact of Nanoparticle Size. Angewandte Chemie, 2015, 127, 2370-2374.	2.0	8
171	Nanoimprinting-Induced Nanomorphological Transition in Polymer Solar Cells: Enhanced Electrical and Optical Performance. ACS Nano, 2015, 9, 2773-2782.	14.6	31
172	Charge Transport in Metal–Oxide Interfaces: Genesis and Detection of Hot Electron Flow and Its Role in Heterogeneous Catalysis. Catalysis Letters, 2015, 145, 299-308.	2.6	45
173	Large changes of graphene conductance as a function of lattice orientation between stacked layers. Nanotechnology, 2015, 26, 015702.	2.6	5
174	Shape-dependent adhesion and friction of Au nanoparticles probed with atomic force microscopy. Nanotechnology, 2015, 26, 135707.	2.6	4
175	Nanoporous networks as caging supports for uniform, surfactant-free Co ₃ O ₄ nanocrystals and their applications in energy storage and conversion. Journal of Materials Chemistry A, 2015, 3, 15489-15497.	10.3	18
176	Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy. Nanoscale, 2015, 7, 12297-12301.	5.6	28
177	Nanoscale adhesion between Pt nanoparticles and carbon support and its influence on the durability of fuel cells. Current Applied Physics, 2015, 15, S108-S114.	2.4	11
178	Photon-Induced Hot Electron Effect on the Catalytic Activity of Ceria-Supported Gold Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 16020-16025.	3.1	25
179	Hot-Electron-Mediated Surface Chemistry: Toward Electronic Control of Catalytic Activity. Accounts of Chemical Research, 2015, 48, 2475-2483.	15.6	123
180	Role of Hot Electrons and Metal–Oxide Interfaces in Surface Chemistry and Catalytic Reactions. Chemical Reviews, 2015, 115, 2781-2817.	47.7	282

#	Article	IF	CITATIONS
181	Tailoring metal–oxide interfaces of inverse catalysts of TiO ₂ /nanoporous-Au under hydrogen oxidation. Chemical Communications, 2015, 51, 9620-9623.	4.1	25
182	Internal and External Atomic Steps in Graphite Exhibit Dramatically Different Physical and Chemical Properties. ACS Nano, 2015, 9, 3814-3819.	14.6	57
183	Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Applied Physics Letters, 2015, 106, .	3.3	167
184	The effect of loading on sintering and catalytic activity of Pt/SiO2 hybrid catalyst powders synthesized via spray pyrolysis. Korean Journal of Chemical Engineering, 2014, 31, 1980-1984.	2.7	5
185	Strain effects on in-plane conductance of the topological insulator Bi2Te3. Applied Physics Letters, 2014, 104, .	3.3	12
186	Fundamental Aspects of Energy Dissipation in Friction. Chemical Reviews, 2014, 114, 677-711.	47.7	195
187	Nanomechanical and Charge Transport Properties of Twoâ€Dimensional Atomic Sheets. Advanced Materials Interfaces, 2014, 1, 1300089.	3.7	32
188	Support effect on the catalytic activity of two-dimensional Pt nanoparticle arrays on oxide substrates. Applied Catalysis A: General, 2014, 480, 25-33.	4.3	18
189	Oneâ€Pot Selfâ€Templating Synthesis of Pt Hollow Nanostructures and Their Catalytic Properties for CO Oxidation. Chemistry - A European Journal, 2014, 20, 11669-11674.	3.3	20
190	Enhanced Surface Plasmon Effect of Ag/TiO ₂ Nanodiodes on Internal Photoemission. Journal of Physical Chemistry C, 2014, 118, 5650-5656.	3.1	92
191	Enhanced H ₂ Generation of Au‣oaded, Nitrogenâ€Đoped TiO ₂ Hierarchical Nanostructures under Visible Light. Advanced Materials Interfaces, 2014, 1, 1300018.	3.7	67
192	Role of oxidation on surface conductance of the topological insulator Bi2Te2Se. Surface Science, 2014, 630, 153-157.	1.9	12
193	Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons. Journal of the American Chemical Society, 2014, 136, 8875-8878.	13.7	360
194	Hot Electron and Surface Plasmon-Driven Catalytic Reaction in Metal–Semiconductor Nanostructures. Catalysis Letters, 2014, 144, 1996-2004.	2.6	49
195	Catalytic activity of Pt/SiO2 nanocatalysts synthesized via ultrasonic spray pyrolysis process under CO oxidation. Applied Catalysis B: Environmental, 2014, 154-155, 171-176.	20.2	34
196	Chemical Doping of TiO2 with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation. Catalysis Letters, 2014, 144, 1411-1417.	2.6	23
197	Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. Scientific Reports, 2014, 4, 4580.	3.3	25
198	Bridging Materials and Pressure Gaps in Surface Science and Heterogeneous Catalysis. , 2014, , 3-17.		6

Bridging Materials and Pressure Gaps in Surface Science and Heterogeneous Catalysis. , 2014, , 3-17. 198

#	Article	IF	CITATIONS
199	Non-colloidal Nanocatalysts Fabricated with Nanolithography and Arc Plasma Deposition. , 2014, , 45-64.		2
200	Role of Surface Oxides on Model Nanocatalysts in Catalytic Activity of CO Oxidation. , 2014, , 145-170.		0
201	Electronic Excitation on Surfaces During Chemical and Photon Processes. , 2014, , 231-257.		0
202	Reversible oxidation states of single layer graphene tuned by electrostatic potential. Surface Science, 2013, 612, 37-41.	1.9	8
203	Nanotribological Properties of Fluorinated, Hydrogenated, and Oxidized Graphenes. Tribology Letters, 2013, 50, 137-144.	2.6	123
204	Overcoming the "retention vs. voltage―trade-off in nonvolatile organic memory: Ag nanoparticles covered with dipolar self-assembled monolayers as robust charge storage nodes. Organic Electronics, 2013, 14, 3260-3266.	2.6	19
205	Work function engineering of single layer graphene by irradiation-induced defects. Applied Physics Letters, 2013, 103, .	3.3	113
206	Nature of Rh Oxide on Rh Nanoparticles and Its Effect on the Catalytic Activity of CO Oxidation. Catalysis Letters, 2013, 143, 1153-1161.	2.6	20
207	Influence of hot carriers on catalytic reaction; Pt nanoparticles on GaN substrates under light irradiation. Faraday Discussions, 2013, 162, 355.	3.2	31
208	Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Applied Catalysis A: General, 2013, 454, 53-58.	4.3	72
209	Impact of water corrosion on nanoscale conductance on aluminum doped zinc oxide. Thin Solid Films, 2013, 547, 163-167.	1.8	13
210	Deactivation of Ru Catalysts under Catalytic CO Oxidation by Formation of Bulk Ru Oxide Probed with Ambient Pressure XPS. Journal of Physical Chemistry C, 2013, 117, 13108-13113.	3.1	42
211	Hot Carrier-Driven Catalytic Reactions on Pt–CdSe–Pt Nanodumbbells and Pt/GaN under Light Irradiation. Nano Letters, 2013, 13, 1352-1358.	9.1	101
212	Superlubric Sliding of Graphene Nanoflakes on Graphene. ACS Nano, 2013, 7, 1718-1724.	14.6	370
213	Tuning Hydrophobicity of TiO ₂ Layers with Silanization and Self-Assembled Nanopatterning. Langmuir, 2013, 29, 3054-3060.	3.5	41
214	Probing polarization modes of Ag nanowires with hot electron detection on Au/TiO2 nanodiodes. Applied Physics Letters, 2013, 102, 123112.	3.3	13
215	Nanoscale Resistive Switching Schottky Contacts on Self-Assembled Pt Nanodots on SrTiO ₃ . ACS Applied Materials & Interfaces, 2013, 5, 11668-11672.	8.0	26
216	Nanoscale Schottky behavior of Au islands on TiO2 probed with conductive atomic force microscopy. Applied Physics Letters, 2013, 103, .	3.3	37

#	Article	IF	CITATIONS
217	Between Scylla and Charybdis: Hydrophobic Graphene-Guided Water Diffusion on Hydrophilic Substrates. Scientific Reports, 2013, 3, 2309.	3.3	60
218	Metallic Discoloration on the Right Shin Caused by Titanium Alloy Prostheses in a Patient with Right Total Knee Replacement. Annals of Dermatology, 2013, 25, 356.	0.9	9
219	Carbon Nanotube-Metal Contact. , 2012, , 388-391.		1
220	Facile characterization of ripple domains on exfoliated graphene. Review of Scientific Instruments, 2012, 83, 073905.	1.3	27
221	Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy. Journal Physics D: Applied Physics, 2012, 45, 275301.	2.8	10
222	Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS. Nano Letters, 2012, 12, 5761-5768.	9.1	182
223	Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: Role of surface oxide. Catalysis Today, 2012, 185, 131-137.	4.4	38
224	Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO ₂ Substrate on Catalytic Activity of CO Oxidation. Journal of Physical Chemistry C, 2012, 116, 24054-24059.	3.1	66
225	Reversible bistability of conductance on graphene/CuOx/Cu nanojunction. Applied Physics Letters, 2012, 100, 123101.	3.3	19
226	The Effect of Dye Molecules and Surface Plasmons in Photon-Induced Hot Electron Flows Detected on Au/TiO ₂ Nanodiodes. Journal of Physical Chemistry C, 2012, 116, 18591-18596.	3.1	29
227	Capacitive MEMS Switches. , 2012, , 363-374.		0
228	Chitosan Nanoparticles. , 2012, , 427-433.		0
229	Onychomycosis Caused by <i>Scopulariopsis brevicaulis</i> : Report of Two Cases. Annals of Dermatology, 2012, 24, 209.	0.9	12
230	Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surface and Interface Analysis, 2012, 44, 768-771.	1.8	16
231	Enhanced Nanoscale Friction on Fluorinated Graphene. Nano Letters, 2012, 12, 6043-6048.	9.1	262
232	Large-Scale Synthesis and CO Oxidation Study of FeCr Alloy Supported Pt Nanocatalyst by Electrical Wire Explosion Process. Catalysis Letters, 2012, 142, 326-331.	2.6	9
233	Size effect of RhPt bimetallic nanoparticles in catalytic activity of CO oxidation: Role of surface segregation. Catalysis Today, 2012, 181, 133-137.	4.4	54
234	Unilateral cutaneous mycotic septic vasculitis in a patient with <i>Aspergillus</i> vegetation in the ascending aorta. Journal of Dermatology, 2012, 39, 799-801.	1.2	2

#	Article	IF	CITATIONS
235	Tuning Nanoscale Friction on Pt Nanoparticles with Engineering of Organic Capping Layer. Langmuir, 2011, 27, 2509-2513.	3.5	17
236	Ultrathin titania coating for high-temperature stable SiO2/Pt nanocatalysts. Chemical Communications, 2011, 47, 8412.	4.1	23
237	Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes. Nano Letters, 2011, 11, 4251-4255.	9.1	267
238	Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth. Nanotechnology, 2011, 22, 085502.	2.6	34
239	Friction Anisotropy–Driven Domain Imaging on Exfoliated Monolayer Graphene. Science, 2011, 333, 607-610.	12.6	284
240	Improved oxidation resistance of Ru/Si capping layer for extreme ultraviolet lithography reflector. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 041602.	1.2	3
241	Probing nanoscale conductance of monolayer graphene under pressure. Applied Physics Letters, 2011, 99, 013110.	3.3	35
242	Sensing current and forces with SPM. Materials Today, 2010, 13, 38-45.	14.2	57
243	Probing nanotribological and electrical properties of organic molecular films with atomic force microscopy. Scanning, 2010, 32, 257-264.	1.5	10
244	Electrochemically Enhanced Wet Cleaning of Ru Capping Thin Film for EUV Lithography Reflector. Journal of the Electrochemical Society, 2010, 157, H414.	2.9	6
245	Influence of Molecular Ordering on Electrical and Friction Properties of ï‰-(<i>trans</i> -4-Stilbene)Alkylthiol Self-Assembled Monolayers on Au (111). Langmuir, 2010, 26, 16522-16528.	3.5	19
246	Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Letters, 2010, 10, 2709-2713.	9.1	379
247	Chemical effect of dry and wet cleaning of the Ru protective layer of the extreme ultraviolet lithography reflector. Journal of Vacuum Science & Technology B, 2009, 27, 1919-1925.	1.3	27
248	Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy. Journal of Chemical Physics, 2009, 130, 114705.	3.0	25
249	The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation. Catalysis Letters, 2009, 129, 1-6.	2.6	159
250	Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nature Materials, 2009, 8, 126-131.	27.5	1,372
251	Concepts, instruments, and model systems that enabled the rapid evolution of surface science. Surface Science, 2009, 603, 1293-1300.	1.9	67
252	Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes. Nano Letters, 2009, 9, 3930-3933.	9.1	96

#	Article	IF	CITATIONS
253	Sum Frequency Generation and Catalytic Reaction Studies of the Removal of Organic Capping Agents from Pt Nanoparticles by UVâ^'Ozone Treatment. Journal of Physical Chemistry C, 2009, 113, 6150-6155.	3.1	254
254	Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques. Journal of the American Chemical Society, 2009, 131, 16589-16605.	13.7	494
255	The Nanoscience Revolution: Merging of Colloid Science, Catalysis and Nanoelectronics. Topics in Catalysis, 2008, 47, 1-14.	2.8	157
256	Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and Their Influence on Activity and Selectivity. Topics in Catalysis, 2008, 49, 126-135.	2.8	267
257	Molecular Factors of Catalytic Selectivity. Angewandte Chemie - International Edition, 2008, 47, 9212-9228.	13.8	436
258	A Reactive Oxide Overlayer on Rhodium Nanoparticles during CO Oxidation and Its Size Dependence Studied by In Situ Ambientâ€Pressure Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 8893-8896.	13.8	260
259	Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chemical Society Reviews, 2008, 37, 2155.	38.1	159
260	Mechanical and Charge Transport Properties of Alkanethiol Self-Assembled Monolayers on a Au(111) Surface:  The Role of Molecular Tilt. Langmuir, 2008, 24, 2219-2223.	3.5	62
261	Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO ₂ Schottky Diodes during Catalytic CO Oxidation. Nano Letters, 2008, 8, 2388-2392.	9.1	137
262	Tuning of Catalytic CO Oxidation by Changing Composition of Rhâ^'Pt Bimetallic Nanoparticles. Nano Letters, 2008, 8, 673-677.	9.1	205
263	Friction anisotropy: A unique and intrinsic property of decagonal quasicrystals. Journal of Materials Research, 2008, 23, 1488-1493.	2.6	26
264	Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure. Journal of Chemical Physics, 2008, 128, 182504.	3.0	61
265	Atomic scale friction and adhesion properties of quasicrystal surfaces. Journal of Physics Condensed Matter, 2008, 20, 314012.	1.8	33
266	The effects of oxygen plasma on the chemical composition and morphology of the Ru capping layer of the extreme ultraviolet mask blanks. Journal of Vacuum Science & Technology B, 2008, 26, 2225-2229.	1.3	13
267	Noncontact to contact tunneling microscopy in self-assembled monolayers of alkylthiols on gold. Journal of Chemical Physics, 2008, 128, 234701.	3.0	8
268	Electronic contribution to friction on GaAs: An atomic force microscope study. Physical Review B, 2008, 77, .	3.2	75
269	Influence of reaction with XeF2 on surface adhesion of Al and Al2O3 surfaces. Applied Physics Letters, 2008, 93, 141905.	3.3	15
270	Influence of carrier density on the friction properties of silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi>n</mml:mrow>junctions. Physical Review B, 2007, 76, .</mml:math 	3.2	50

#	Article	IF	CITATIONS
271	Mechanical and electrical properties of CdTe tetrapods studied by atomic force microscopy. Journal of Chemical Physics, 2007, 127, 184704.	3.0	61
272	Frontiers of surface science. Physics Today, 2007, 60, 48-53.	0.3	60
273	The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10â^3Torr) to high pressure (>10â^3Torr) to liquid interfaces. Physical Chemistry Chemical Physics, 2007, 9, 3500-3513.	2.8	152
274	Interfacial and Chemical Properties of Pt/TiO ₂ , Pd/TiO ₂ , and Pt/GaN Catalytic Nanodiodes Influencing Hot Electron Flow. Journal of Physical Chemistry C, 2007, 111, 15331-15336.	3.1	93
275	Atomic Force Microscopy Study of the Mechanical and Electrical Properties of Monolayer Films of Molecules with Aromatic End Groups. Langmuir, 2007, 23, 11522-11525.	3.5	30
276	The genesis and importance of oxide–metal interface controlled heterogeneous catalysis; the catalytic nanodiode. Topics in Catalysis, 2007, 46, 217-222.	2.8	69
277	The impact of surface science on the commercialization of chemical processes. Catalysis Letters, 2007, 115, 87-98.	2.6	51
278	Electronic Control of Friction in Silicon pn Junctions. Science, 2006, 313, 186-186.	12.6	172
279	Tribological properties of quasicrystals: Effect of aperiodic versus periodic surface order. Physical Review B, 2006, 74, .	3.2	39
280	Velocity Dependence of Friction and Hydrogen Bonding Effects. Physical Review Letters, 2006, 96, 236102.	7.8	110
281	Dynamics of Surface Catalyzed Reactions; the Roles of Surface Defects, Surface Diffusion, and Hot Electronsâ€. Journal of Physical Chemistry B, 2006, 110, 20014-20022.	2.6	61
282	The Catalytic Nanodiode: Detecting Continous Electron Flow at Oxide-Metal Interfaces Generated by a Gas-Phase Exothermic Reaction. ChemPhysChem, 2006, 7, 1409-1413.	2.1	93
283	Adhesion properties of decagonal quasicrystals in ultrahigh vacuum. Philosophical Magazine, 2006, 86, 945-950.	1.6	19
284	Energy conversion from catalytic reaction to hot electron current with metal-semiconductor Schottky nanodiodes. Journal of Vacuum Science & Technology B, 2006, 24, 1967.	1.3	50
285	High Frictional Anisotropy of Periodic and Aperiodic Directions on a Quasicrystal Surface. Science, 2005, 309, 1354-1356.	12.6	189
286	Publisher's Note: Elastic and inelastic deformations of ethylene-passivated tenfold decagonal Al-Ni-Co quasicrystal surfaces [Phys. Rev. B71, 144203 (2005)]. Physical Review B, 2005, 71, .	3.2	0
287	Direct measurement of forces during scanning tunneling microscopy imaging of silicon pn junctions. Applied Physics Letters, 2005, 86, 172105.	3.3	21
288	Elastic and inelastic deformations of ethylene-passivated tenfold decagonalAlâ^'Niâ^'Coquasicrystal surfaces. Physical Review B, 2005, 71, .	3.2	34

#	Article	IF	CITATIONS
289	Sensing Dipole Fields at Atomic Steps with Combined Scanning Tunneling and Force Microscopy. Physical Review Letters, 2005, 95, 136802.	7.8	48
290	Atomic scale coexistence of periodic and quasiperiodic order in a 2-fold Al-Ni-Co decagonal quasicrystal surface. Physical Review B, 2005, 72, .	3.2	26
291	Friction and Adhesion Properties of Clean and Oxidized Al–Ni–Co Decagonal Quasicrystals: A UHV Atomic Force Microscopy/Scanning Tunneling Microscopy Study. Tribology Letters, 2004, 17, 629-636.	2.6	58
292	Time response in tunneling to a pn junction. Applied Physics Letters, 2003, 82, 64-66.	3.3	5
293	Investigation of the direct electromigration term for Al nanodots within the depletion zone of a pn junction. Journal of Applied Physics, 2003, 94, 6883-6886.	2.5	4
294	Conductance imaging of thermally desorbed silicon oxide. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1254.	1.6	11
295	Polarity dependence in pulsed scanning tunneling microscopy fabrication and modification of metal nanodots on silicon. Journal of Applied Physics, 2002, 92, 2139-2143.	2.5	31
296	Direct imaging of a biased p-n junction with conductance mapping. Journal of Applied Physics, 2002, 91, 3745-3749.	2.5	15
297	Scanning tunneling spectroscopy of field-induced Au nanodots on ultrathin oxides on Si(100). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 523.	1.6	5
298	Interference pattern of a coherent electron beam by localized leakage magnetic field. Applied Physics Letters, 2001, 78, 1745-1747.	3.3	4
299	Variation of threshold field in field induced fabrication of Au nanodots on ultrathin in situ grown silicon oxide. Surface Science, 2000, 470, L69-L74.	1.9	6
300	Low-energy electron point source microscope with position-sensitive electron energy analyzer. Review of Scientific Instruments, 1999, 70, 4304-4307.	1.3	10
301	Atomic view of Ge on the monohydrideSi(001)â^'(2×1)surface. Physical Review B, 1999, 60, 16558-16562.	3.2	2
302	Fabrication of microelectron gun arrays using laser micromachining. Microelectronic Engineering, 1998, 41-42, 167-170.	2.4	9
303	Construction of microcolumn system and its application to nanolithography. Microelectronic Engineering, 1998, 41-42, 485-488.	2.4	8
304	Fabrication of electron-beam microcolumn aligned by scanning tunneling microscope. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1499-1502.	2.1	7
305	Plasmonic Hot Hole-Driven Water Splitting on Au Nanoprisms/P-Type GaN. ACS Energy Letters, 0, , 1333-1339.	17.4	57