Catarina Conte Jakovac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6286367/publications.pdf

Version: 2024-02-01

30 papers

3,222 citations

20 h-index 29 g-index

32 all docs 32 docs citations

times ranked

32

4057 citing authors

#	Article	IF	CITATIONS
1	Reply to: Restoration prioritization must be informed by marginalized people. Nature, 2022, 607, E7-E9.	27.8	5
2	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
3	Associations between socioâ€environmental factors and landscapeâ€scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conservation Letters, 2021, 14, e12768.	5.7	18
4	The role of landâ€use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews, 2021, 96, 1114-1134.	10.4	63
5	Active Restoration Initiates High Quality Forest Succession in a Deforested Landscape in Amazonia. Forests, 2021, 12, 1022.	2.1	4
6	Early Response of Soil Properties under Different Restoration Strategies in Tropical Hotspot. Land, 2021, 10, 768.	2.9	4
7	Editorial: Enhancing Natural Regeneration to Restore Landscapes. Frontiers in Forests and Global Change, 2021, 4, .	2.3	5
8	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	34
9	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	12.6	165
10	Chapter 24: Resilience of the Amazon forest to global changes: Assessing the risk of tipping points. , 2021, , .		5
11	Soil erosion as a resilience drain in disturbed tropical forests. Plant and Soil, 2020, 450, 11-25.	3.7	43
12	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	27.8	489
13	Costs and Carbon Benefits of Mangrove Conservation and Restoration: A Global Analysis. Ecological Economics, 2020, 176, 106758.	5.7	40
14	Biochar amendment improves degraded pasturelands in Brazil: environmental and cost-benefit analysis. Scientific Reports, 2019, 9, 11993.	3.3	25
15	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	7.8	120
16	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	10.3	291
17	Floodplains as an Achilles' heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4442-4446.	7.1	96
18	Reply to Schöngart et al.: Forest resilience variation across Amazonian floodplains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8552-E8554.	7.1	0

#	Article	IF	CITATIONS
19	Forest restoration assessment in Brazilian Amazonia: A new clustering-based methodology considering the reference ecosystem. Ecological Engineering, 2017, 108, 93-99.	3 . 6	8
20	Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests. Ecosystems, 2017, 20, 340-353.	3.4	37
21	The role of parabiotic ants and environment on epiphyte composition and protection in ant gardens. Sociobiology, 2017, 64, 276.	0.5	5
22	Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: Expansion and intensification. PLoS ONE, 2017, 12, e0181092.	2.5	54
23	Land use as a filter for species composition in Amazonian secondary forests. Journal of Vegetation Science, 2016, 27, 1104-1116.	2.2	63
24	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	10.3	423
25	Swiddens under transition: Consequences of agricultural intensification in the Amazon. Agriculture, Ecosystems and Environment, 2016, 218, 116-125.	5. 3	55
26	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	27.8	763
27	Reconstructing land use history from Landsat time-series. International Journal of Applied Earth Observation and Geoinformation, 2016, 47, 112-124.	2.8	51
28	Loss of secondaryâ€forest resilience by landâ€use intensification in the <scp>A</scp> mazon. Journal of Ecology, 2015, 103, 67-77.	4.0	194
29	Amazon Rain Forest Succession: Stochasticity or Land-Use Legacy?. BioScience, 2015, 65, 849-861.	4.9	120
30	Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecology and Diversity, 2014, 7, 349-358.	2.4	30