Jason A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/628500/publications.pdf

Version: 2024-02-01

113	2,354	172457 29	254184
papers	citations	h-index	g-index
134	134	134	2863
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Natural products isolation studies of the paleoendemic plant species Nothofagus gunnii and Nothofagus cunninghamii. F¬toterap¬¢, 2022, 156, 105088.	2.2	4
2	Synthesis of Pyrrolidine―and Î³â€Łactamâ€Containing Natural Products and Related Compounds from Pyrrole Scaffolds. Chemical Record, 2022, 22, .	5.8	10
3	Activity of natural and synthetic polygodial derivatives against <i>Trypanosoma cruzi</i> amastigotes, trypomastigotes and epimastigotes. Natural Product Research, 2021, 35, 792-795.	1.8	4
4	How a Bismuth(III) Catalyst Achieves Greatest Activation of Organic Lewis Bases in a Catalytic Reaction: Insights from DFT Calculations. ChemCatChem, 2021, 13, 975-980.	3.7	5
5	Novel Short-Chain Quinones to Treat Vision Loss in a Rat Model of Diabetic Retinopathy. International Journal of Molecular Sciences, 2021, 22, 1016.	4.1	7
6	Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water. Journal of Organic Chemistry, 2021, 86, 2998-3007.	3.2	3
7	Bioactivity Profiles of Cytoprotective Short-Chain Quinones. Molecules, 2021, 26, 1382.	3.8	1
8	Asperuloside Enhances Taste Perception and Prevents Weight Gain in High-Fat Fed Mice. Frontiers in Endocrinology, 2021, 12, 615446.	3.5	8
9	Unified Total Syntheses of (±)-Sessilifoliamides B, C, and D. Organic Letters, 2021, 23, 3437-3441.	4.6	11
10	Short-Chain Naphthoquinone Protects Against Both Acute and Spontaneous Chronic Murine Colitis by Alleviating Inflammatory Responses. Frontiers in Pharmacology, 2021, 12, 709973.	3.5	1
11	Revised Structures of Dehydrostenines A and B: Total Syntheses of (±)â€Dehydrostenine A and Structure Assigned to Dehydrostenine B. Chemistry - A European Journal, 2021, 27, 15382-15386.	3.3	10
12	Exploring Cyclization Strategies to Access Stemona Alkaloids: Subtle Effects Influencing Reactivity in Intramolecular Michael Additions. Organic Letters, 2021, 23, 8494-8498.	4.6	6
13	Polygodial and Ophiobolin A Analogues for Covalent Crosslinking of Anticancer Targets. International Journal of Molecular Sciences, 2021, 22, 11256.	4.1	5
14	Distinct Drimane Chemotypes in Tasmanian Mountain Pepper (<i>Tasmannia lanceolata</i>): Differences in the Profiles of Pungent Leaf Phytochemicals Associated with Altitudinal Cline. Journal of Agricultural and Food Chemistry, 2020, 68, 315-322.	5.2	1
15	DFT-Based Comparison between Mechanistic Aspects of Amine and Alcohol Oxidation Mediated by IBX. Journal of Organic Chemistry, 2020, 85, 515-525.	3.2	8
16	Comparative In Vitro Toxicology of Novel Cytoprotective Short-Chain Naphthoquinones. Pharmaceuticals, 2020, 13, 184.	3.8	5
17	Development and Applications of Waterâ€based Extraction Methods in Natural Products Isolation Chemistry. Asian Journal of Organic Chemistry, 2020, 9, 1144-1153.	2.7	11
18	Cow Dung Biomass Smoke Exposure Increases Adherence of Respiratory Pathogen Nontypeable Haemophilus influenzae to Human Bronchial Epithelial Cells. Exposure and Health, 2020, 12, 883-895.	4.9	6

#	Article	IF	Citations
19	Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones. Pharmaceuticals, 2020, 13, 29.	3.8	5
20	Pressurized Hot Water Extraction and Capillary Electrophoresis for Green and Fast Analysis of Useful Metabolites in Plants. Molecules, 2019, 24, 2349.	3.8	5
21	Amide linked redox-active naphthoquinones for the treatment of mitochondrial dysfunction. MedChemComm, 2019, 10, 399-412.	3.4	13
22	Methods for the synthesis of annulated pyrroles <i>via</i> cyclisation strategies. Organic and Biomolecular Chemistry, 2018, 16, 1216-1226.	2.8	40
23	Brønsted acid-mediated annulations of pyrroles featuring N-tethered \hat{i}_{\pm} , \hat{i}_{-}^{2} -unsaturated ketones and esters: Total syntheses of (\hat{A}_{\pm})-tashiromine and (\hat{A}_{\pm})-indolizidine 209I. Tetrahedron, 2018, 74, 5436-5441.	1.9	12
24	Arbutin Derivatives Isolated from Ancient Proteaceae: Potential Phytochemical Markers Present in <i>Bellendena</i> , <i>Cenarrhenes</i> , and <i>Persoonia</i> Genera. Journal of Natural Products, 2018, 81, 1241-1251.	3.0	18
25	Extraction of carboxylic acid-containing diterpenoids from Dodonaea viscosa via pressurised hot water extraction. FA¬toterapA¬A¢, 2018, 126, 65-68.	2.2	7
26	Polygodial: A viable natural product scaffold for the rapid synthesis of novel polycyclic pyrrole and pyrrolidine derivatives. Tetrahedron, 2018, 74, 1167-1174.	1.9	8
27	Employing Pressurized Hot Water Extraction (PHWE) to Explore Natural Products Chemistry in the Undergraduate Laboratory. Journal of Visualized Experiments, 2018, , .	0.3	3
28	Novel polygodial analogs P3 and P27: Efficacious therapeutic agents disrupting mitochondrial function in oral squamous cell carcinoma. International Journal of Oncology, 2018, 53, 2627-2636.	3.3	4
29	Capstone Laboratory Experiment Investigating Key Features of Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions. Journal of Chemical Education, 2018, 95, 2081-2085.	2.3	11
30	Nuances in Fundamental Suzuki–Miyaura Cross-Couplings Employing [Pd(PPh3)4]: Poor Reactivity of Aryl Iodides at Lower Temperatures. Organometallics, 2018, 37, 1745-1750.	2.3	19
31	Natural Products Isolated from Endemic Tasmanian Vascular Plants. Australian Journal of Chemistry, 2018, 71, 756.	0.9	5
32	Progress in the Development of Plateletâ€Activating Factor Receptor (PAFr) Antagonists and Applications in the Treatment of Inflammatory Diseases. ChemMedChem, 2018, 13, 1873-1884.	3.2	24
33	Phytochemical profile of the rare, ancient clone Lomatia tasmanica and comparison to other endemic Tasmanian species L. tinctoria and L. polymorpha. Phytochemistry, 2018, 153, 74-78.	2.9	10
34	Bitter melon protects against ER stress in LS174T colonic epithelial cells. BMC Complementary and Alternative Medicine, 2017, 17, 2.	3.7	14
35	Pressurized Hot Water Extraction as a Viable Bioprospecting Tool: Isolation of Coumarin Natural Products from Previously Unexamined Correa (Rutaceae) Species. ChemistrySelect, 2017, 2, 2439-2443.	1.5	13
36	<i>ent</i> -Labdane Diterpenoids from <i>Dodonaea viscosa</i> . Journal of Natural Products, 2016, 79, 3117-3126.	3.0	11

#	Article	IF	CITATIONS
37	Practical Isolation of Asperuloside from Coprosma quadrifida via Rapid Pressurised Hot Water Extraction. Australian Journal of Chemistry, 2016, 69, 1219.	0.9	10
38	Visible light dye-photosensitised oxidation of pyrroles using a simple LED photoreactor. Organic and Biomolecular Chemistry, 2016, 14, 8873-8880.	2.8	4
39	Identification of the putative aggregation pheromone components emitted by the European earwig, Forficula auricularia. Chemoecology, 2016, 26, 173-186.	1.1	7
40	The Oxidation of Pyrrole. Chemistry - an Asian Journal, 2016, 11, 155-167.	3.3	53
41	The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum. Planta, 2016, 243, 1387-1396.	3.2	38
42	Extraction of Eugenol from Cloves Using an Unmodified Household Espresso Machine: An Alternative to Traditional Steam-Distillation. Journal of Chemical Education, 2016, 93, 213-216.	2.3	31
43	Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?. Plant Physiology, 2016, 171, 1230-41.	4.8	31
44	Border between natural product and drug: Comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biology, 2015, 4, 289-295.	9.0	84
45	Analysis of the Enol–Keto Tautomers of Indole-3-pyruvic Acid. Australian Journal of Chemistry, 2015, 68, 345.	0.9	5
46	New Method for the Rapid Extraction of Natural Products: Efficient Isolation of Shikimic Acid from Star Anise. Organic Letters, 2015, 17, 2428-2430.	4.6	66
47	Practical isolation of polygodial from Tasmannia lanceolata: a viable scaffold for synthesis. Organic and Biomolecular Chemistry, 2015, 13, 11200-11207.	2.8	31
48	Isolation and Characterization of 1 βâ€Acetoxypolygodial from <i>Tasmannia lanceolata</i> . Asian Journal of Organic Chemistry, 2014, 3, 1193-1196.	2.7	4
49	Seven-Membered Rings. Progress in Heterocyclic Chemistry, 2014, 26, 521-571.	0.5	4
50	Synthesis of Nitrogen-Substituted Methylenecyclopropanes by Strain-Driven Overman Rearrangement of Cyclopropenylmethyl Trichloroacetimidates. Journal of Organic Chemistry, 2014, 79, 8462-8468.	3.2	12
51	Synthesis of Heterocyclic-fused Imidazoles by Pyrolysis of N-Heterocyclic Isoxazol-5(2H)-ones. Australian Journal of Chemistry, 2014, 67, 1228.	0.9	3
52	3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis. European Journal of Medicinal Chemistry, 2013, 66, 450-465.	5.5	32
53	Seven-Membered Rings. Progress in Heterocyclic Chemistry, 2013, , 455-495.	0.5	11
54	Mechanistic investigation of the oxidation of hydrazides: implications for the activation of the TB drug isoniazid. Organic and Biomolecular Chemistry, 2013, 11, 170-176.	2.8	22

#	Article	IF	Citations
55	Controlled Oxidation of Pyrroles: Synthesis of Highly Functionalized \hat{I}^3 -Lactams. Organic Letters, 2013, 15, 1714-1717.	4.6	31
56	Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid Â. Plant Physiology, 2012, 159, 1055-1063.	4.8	69
57	A mutation affecting the synthesis of 4-chloroindole-3-acetic acid. Plant Signaling and Behavior, 2012, 7, 1533-1536.	2.4	1
58	Seven-Membered Rings. Progress in Heterocyclic Chemistry, 2012, 24, 493-536.	0.5	30
59	Seven-Membered Rings. Progress in Heterocyclic Chemistry, 2011, 23, 465-504.	0.5	7
60	Seven-Membered Rings. Progress in Heterocyclic Chemistry, 2011, 22, 491-536.	0.5	8
61	Chemoselective reduction of 2-acyl-N-sulfonylpyrroles: Synthesis of 3-pyrrolines and 2-alkylpyrroles. Organic and Biomolecular Chemistry, 2011, 9, 3948.	2.8	20
62	UV initiated formation of polymer monoliths in glass and polymer microreactors. Sensors and Actuators B: Chemical, 2011, 155, 388-396.	7.8	35
63	Reassessing the role of YUCCAs in auxin biosynthesis. Plant Signaling and Behavior, 2011, 6, 437-439.	2.4	7
64	Reassessing the Role of <i>N</i> -Hydroxytryptamine in Auxin Biosynthesis. Plant Physiology, 2010, 154, 1957-1965.	4.8	59
65	Synthesis and Phytotoxicity of Structural Analogues of Thaxtomin Natural Products. Australian Journal of Chemistry, 2010, 63, 813.	0.9	21
66	Development of a novel fluorescent tag O-2-[aminoethyl]fluorescein for the electrophoretic separation of oligosaccharides. Analytica Chimica Acta, 2010, 662, 206-213.	5.4	14
67	Acyl radical addition to benzene and related systems—a computational study. Tetrahedron, 2010, 66, 7600-7604.	1.9	4
68	Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 1105-1110.	1.5	29
69	Chapter 7: Seven-Membered Rings. Progress in Heterocyclic Chemistry, 2009, 21, 491-530.	0.5	14
70	Auxin Biosynthesis in Pea: Characterization of the Tryptamine Pathway Â. Plant Physiology, 2009, 151, 1130-1138.	4.8	82
71	Chapter 7: Seven-membered rings. Progress in Heterocyclic Chemistry, 2009, , 432-458.	0.5	3
72	Acyl radical addition to pyridine: multiorbital interactions. Tetrahedron, 2009, 65, 7653-7657.	1.9	8

#	Article	IF	Citations
73	Supported palladium catalysis using a heteroleptic 2-methylthiomethylpyridine–N,S–donor motif for Mizoroki–Heck and Suzuki–Miyaura coupling, including continuous organic monolith in capillary microscale flow-through mode. Tetrahedron, 2009, 65, 7474-7481.	1.9	42
74	Identification, Synthesis and Field Testing of (3Z,6Z,9Z)-3,6,9-Henicosatriene, a Second Bioactive Component of the Sex Pheromone of the Autumn Gum Moth, Mnesampela privata. Journal of Chemical Ecology, 2009, 35, 1411-1422.	1.8	6
75	Palladium-mediated organic synthesis using porous polymer monolith formed in situ as a continuous catalyst support structure for application in microfluidic devices. Tetrahedron, 2009, 65, 1450-1454.	1.9	74
76	Nucleophilic Acyl Substitution of Acyl Diimides. Journal of Organic Chemistry, 2009, 74, 5707-5710.	3.2	3
77	Microfluidic Devices for Flow-Through Supported Palladium Catalysis on Porous Organic Monolith. Australian Journal of Chemistry, 2008, 61, 630.	0.9	16
78	A mechanistic study on the oxidation of hydrazides: application to the tuberculosis drug isoniazid. Chemical Communications, 2008, , 1695.	4.1	38
79	Knorr-Rabe partial reduction of pyrroles: Application to the synthesis of indolizidine alkaloids. Beilstein Journal of Organic Chemistry, 2008, 4, 3.	2.2	12
80	Use of the Anti-Oxidant Butylated Hydroxytoluene in situ for the Synthesis of Readily Oxidized Compounds: Application to the Synthesis of the Moth Pheromone (Z,Z,Z)-3,6,9-Nonadecatriene. Australian Journal of Chemistry, 2007, 60, 848.	0.9	5
81	Methyl 4-chloro-3,5-di-p-tolyl-1H-pyrrole-2-carboxylate dichloromethane hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o197-o199.	0.2	0
82	Methyl 4-p-tolyl-1H-pyrrole-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o470-o471.	0.2	5
83	(RS)-2-(3,4-Methylenedioxyphenyl)-5-phenyl-3,6-dihydro-2H-pyran. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, 0955-0957.	0.2	0
84	Towards high capacity latex-coated porous polymer monoliths as ion-exchange stationary phases. Analyst, The, 2006, 131, 215-221.	3.5	79
85	The regioselective synthesis of aryl pyrroles. Organic and Biomolecular Chemistry, 2006, 4, 2477.	2.8	38
86	A General and Efficient Approach to the Proposed Structures of Frog Toxins: The 5-Alkylindolizidines. Natural Product Communications, 2006, 1, 1934578X0600101.	0.5	2
87	A new and high yielding synthesis of unstable pyrroles via a modified Clauson-Kaas reaction. Tetrahedron Letters, 2006, 47, 799-801.	1.4	59
88	Macroporous monolith supports for continuous flow capillary microreactors. Tetrahedron Letters, 2006, 47, 9321-9324.	1.4	49
89	Palladiumâ€Catalysed Crossâ€Coupling and Related Reactions Involving Pyrroles. European Journal of Organic Chemistry, 2006, 2006, 3043-3060.	2.4	88
90	Annulation of pyrrole: application to the synthesis of indolizidine alkaloids. Tetrahedron, 2005, 61, 8226-8230.	1.9	57

#	Article	IF	CITATIONS
91	Triplet Lifetimes, Solvent, and Intramolecular Capture of Isoxazolones. Australian Journal of Chemistry, 2004, 57, 101.	0.9	4
92	The influence of chiral auxiliaries and catalysts on the selectivity of intramolecular conjugate additions of pyrrole to N-tethered Michael acceptors. Organic and Biomolecular Chemistry, 2004, 2, 157.	2.8	69
93	A Total Synthesis of the Styryllactone (+)-Goniodiol from Naphthalene. Australian Journal of Chemistry, 2003, 56, 585.	0.9	25
94	Total synthesis of $(\hat{A}\pm)$ -rhazinal, an alkaloidal spindle toxin from Kopsia teoi. Organic and Biomolecular Chemistry, 2003, 1, 296-305.	2.8	63
95	A chemoenzymatic synthesis of the styryllactone (+)-goniodiol from naphthalene. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1622-1624.	1.3	20
96	Exploiting multiple nucleophilic sites on pyrrole for the assembly of polyheterocyclic frameworks: application to a formal total synthesis of $(\hat{A}\pm)$ -aspidospermidine. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2613-2618.	1.3	37
97	A MILD, ONE-POT METHOD FOR THE CONVERSION OF CARBOXYLIC ACIDS INTO THE CORRESPONDING WEINREB AMIDES. Synthetic Communications, 2001, 31, 2011-2019.	2.1	20
98	Ethyl 3-methylimidazo[1,2-a]pyrimidine-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o451-o453.	0.2	1
99	A comparison of some pyrolysis reactions of benzotriazoles, benzisoxazolones and benzisothiazolones. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3212-3216.	1.3	21
100	Convergent synthesis and preliminary biological evaluation of (±)-B-norrhazinal â€. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1497-1499.	1.3	20
101	High-Temperature Rearrangements of 2-Acylisoxazol-5(2H)-ones and Related Oxazoles Australian Journal of Chemistry, 1999, 52, 1029.	0.9	6
102	Separation of the primary and secondary kinetic isotope effects at a reactive center using starting material reactivities. Application to the FeCl3-Catalyzed oxidation of Cî—,H bonds with tert-butyl hydroperoxide. Tetrahedron Letters, 1999, 40, 3847-3850.	1.4	15
103	The Chemistry of 5-Oxodihydroisoxazoles.Part 23.1 Photochemical and Thermal Reactions of Isoxazol-5(2H)-ones substituted at C-3 or C-4 with Nitrogen, Oxygen or Sulfur. Journal of Chemical Research Synopses, 1999, , 70-71.	0.3	2
104	The Chemistry of 5-Oxodihydroisoxazoles. Part 23. Photochemical and Thermal Reactions of Isoxazol-5(2 <i>H</i>)-ones substituted at C-3 or C-4 with Nitrogen, Oxygen or Sulfur. Journal of Chemical Research, 1999, 23, 70-71.	1.3	0
105	Oxidation of Phenylhydrazones with Benzeneseleninic Anhydride: A New Mechanistically Interesting Observation. Molecules Online, 1998, 2, 22-28.	0.3	3
106	The selective functionalization of saturated hydrocarbons. Part 42. Further studies in selective phenylselenation. Tetrahedron, 1998, 54, 1725-1734.	1.9	8
107	Evidence for a higher oxidation state of manganese in the reaction of dinuclear manganese complexes with oxidants. Comparison with iron based Gif chemistry. Tetrahedron, 1998, 54, 3367-3378.	1.9	38
108	Binuclear manganese complexes as catalysts in the selective and efficient oxidation of sulfides to sulfones. Tetrahedron Letters, 1998, 39, 7055-7058.	1.4	87

#	Article	IF	CITATIONS
109	Study of a new reaction: Trapping of peroxyl radicals by TEMPO. Tetrahedron Letters, 1998, 39, 7483-7486.	1.4	50
110	Chemistry of 5-oxodihydroisoxazoles. Part 17.1 Acylation of 5-oxodihydroisoxazoles. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2659-2664.	0.9	11
111	Chemistry of 5-oxodihydroisoxazoles. Part 18.1 Synthesis of oxazoles by the photolysis and pyrolysis of 2-acyl-5-oxo-2,5-dihydroisoxazoles. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2665-2672.	0.9	29
112	The synthesis of oxazoles by thermolysis or photolysis of 2-acylisoxazol-5-ones. Tetrahedron Letters, 1996, 37, 675-678.	1.4	30
113	Photolysis of phenyldisic acids: evidence for unique product formation from discrete tautomers. Journal of the Chemical Society Chemical Communications, 1994, , 1805.	2.0	4