
Alexandr Shafir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6284610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring benzylic <i>gem</i> -C(sp ³)–boron–silicon and boron–tin centers as a synthetic platform. Chemical Science, 2021, 12, 10514-10521.	7.4	6
2	Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. Journal of Organic Chemistry, 2021, 86, 7163-7178.	3.2	13
3	Mechanically Constrained Catalytic Mn(CO) ₃ Br Single Sites in a Two-Dimensional Covalent Organic Framework for CO ₂ Electroreduction in H ₂ O. ACS Catalysis, 2021, 11, 7210-7222.	11.2	43
4	Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer. Pharmaceutics, 2021, 13, 1559.	4.5	3
5	The Power of Iodaneâ€Guided Câ^'H Coupling: A Groupâ€Transfer Strategy in Which a Halogen Works for Its Money. Angewandte Chemie, 2020, 132, 16434.	2.0	6
6	The Power of Iodaneâ€Guided Câ^'H Coupling: A Groupâ€Transfer Strategy in Which a Halogen Works for Its Money. Angewandte Chemie - International Edition, 2020, 59, 16294-16309.	13.8	29
7	Stepwise Mechanism for the Bromination of Arenes by a Hypervalent lodine Reagent. Journal of Organic Chemistry, 2020, 85, 2142-2150.	3.2	27
8	Iodaneâ€Guided ortho Câ^'H Allylation. Angewandte Chemie, 2020, 132, 20376-20382.	2.0	2
9	Iodaneâ€Guided ortho Câ~'H Allylation. Angewandte Chemie - International Edition, 2020, 59, 20201-20207.	13.8	8
10	Hypervalent iodine in the structure of N-heterocycles: synthesis, structure, and application in organic synthesis. Chemistry of Heterocyclic Compounds, 2020, 56, 854-866.	1.2	11
11	Crystalâ€ŧo rystal Synthesis of Photocatalytic Metal–Organic Frameworks for Visible‣ight Reductive Coupling and Mechanistic Investigations. ChemSusChem, 2020, 13, 3418-3428.	6.8	2
12	Screening and Preliminary Biochemical and Biological Studies of [RuCl(<i>p</i> -cymene)(<i>N</i> , <i>N</i> -bis(diphenylphosphino)-isopropylamine)][BF ₄] in Breast Cancer Models. ACS Omega, 2019, 4, 13005-13014.	3.5	7
13	Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials. ACS Applied Energy Materials, 2019, 2, 8930-8938.	5.1	12
14	Synthesis of Polysubstituted Iodoarenes Enabled by Iterative Iodineâ€Directed <i>para</i> and <i>ortho</i> Câ^'H Functionalization. Angewandte Chemie - International Edition, 2019, 58, 2617-2621.	13.8	33
15	Synthesis of Polysubstituted Iodoarenes Enabled by Iterative Iodineâ€Directed <i>para</i> and <i>ortho</i> Câ^'H Functionalization. Angewandte Chemie, 2019, 131, 2643-2647.	2.0	21
16	Versatile IR Spectroscopy Combined with Synchrotron XAS–XRD: Chemical, Electronic, and Structural Insights during Thermal Treatment of MOF Materials. European Journal of Inorganic Chemistry, 2018, 2018, 1847-1853.	2.0	17
17	Fluoro-tagged osmium and iridium nanoparticles in oxidation reactions. Tetrahedron, 2018, 74, 6890-6895.	1.9	8
18	Synthesis of Five-Membered Iodine–Nitrogen Heterocycles from Benzimidazole-Based Iodonium Salts. Journal of Organic Chemistry, 2018, 83, 12056-12070.	3.2	22

ALEXANDR SHAFIR

#	Article	IF	CITATIONS
19	The Coming of Age in Iodaneâ€Guided ortho â^'H Propargylation: From Insight to Synthetic Potential. Chemistry - A European Journal, 2018, 24, 15517-15521.	3.3	30
20	Triarylmethane Dyes for Artificial Repellent Cotton Fibers. Chemistry - A European Journal, 2017, 23, 3810-3814.	3.3	13
21	Aminophosphine ligands as a privileged platform for development of antitumoral ruthenium(<scp>ii</scp>) arene complexes. Dalton Transactions, 2017, 46, 16113-16125.	3.3	27
22	NHâ€Heterocyclic Aryliodonium Salts and their Selective Conversion into <i>N</i> 1â€Arylâ€5â€iodoimidazoles. Angewandte Chemie, 2016, 128, 7268-7272.	2.0	16
23	The emergence of sulfoxide and iodonio-based redox arylation as a synthetic tool. Tetrahedron Letters, 2016, 57, 2673-2682.	1.4	87
24	Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications. Journal of the American Chemical Society, 2016, 138, 12747-12750.	13.7	127
25	Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 13582-13587.	3.3	74
26	Lanthanides-pybox: An Excellent Combination for Highly Enantioselective Electrophilic α-Amination of Acyclic β-Keto Esters. Isolation of Ternary Pybox/Ln/I²-Keto Ester Complexes. ChemistrySelect, 2016, 1, 4305-4312.	1.5	8
27	NHâ€Heterocyclic Aryliodonium Salts and their Selective Conversion into <i>N</i> 1â€Arylâ€5â€iodoimidazoles. Angewandte Chemie - International Edition, 2016, 55, 7152-7156.	13.8	48
28	Hypervalent Activation as a Key Step for Dehydrogenative <i>ortho</i> CC Coupling of Iodoarenes. Chemistry - A European Journal, 2015, 21, 18779-18784.	3.3	57
29	Waterâ€Soluble Gold Nanoparticles: From Catalytic Selective Nitroarene Reduction in Water to Refractive Index Sensing. Chemistry - an Asian Journal, 2015, 10, 2437-2443.	3.3	23
30	Phosphinoâ€amine (PN) Ligands for Rapid Catalyst Discovery in Ruthenium atalyzed Hydrogenâ€Borrowing Alkylation of Anilines: A Proof of Principle. Advanced Synthesis and Catalysis, 2015, 357, 3538-3548.	4.3	39
31	Metal–Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. Inorganic Chemistry, 2015, 54, 8396-8400.	4.0	222
32	Rhodium Nanoflowers Stabilized by a Nitrogenâ€Rich PEGâ€Tagged Substrate as Recyclable Catalyst for the Stereoselective Hydrosilylation of Internal Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 89-99.	4.3	37
33	Oxidative Breakdown of Iodoalkanes to Catalytically Active Iodine Species: A Case Study in the αâ€Tosyloxylation of Ketones. ChemCatChem, 2014, 6, 468-472.	3.7	12
34	Hydrosilylation of Internal Alkynes Catalyzed by Tris―Imidazolium Saltâ€&tabilized Palladium Nanoparticles. Advanced Synthesis and Catalysis, 2014, 356, 179-188.	4.3	55
35	Heck, Sonogashira, and Hiyama Reactions Catalyzed by Palladium Nanoparticles Stabilized by Trisâ€Imidazolium Salt. European Journal of Organic Chemistry, 2014, 2014, 3001-3008.	2.4	28
36	An Alternative to the Classical αâ€Arylation: The Transfer of an Intact 2â€Iodoaryl from ArI(O ₂ CCF ₃) ₂ . Angewandte Chemie - International Edition, 2014, 53, 11298-11301.	13.8	102

ALEXANDR SHAFIR

#	Article	IF	CITATIONS
37	Gold nanoparticles decorated with a cinchonine organocatalyst: application in the asymmetric α-amination of β-ketoesters. New Journal of Chemistry, 2014, 38, 636-640.	2.8	12
38	Direct Arylation of Oligonaphthalenes Using PIFA/BF ₃ ·Et ₂ O: From Double Arylation to Larger Oligoarene Products. Journal of Organic Chemistry, 2013, 78, 8169-8175.	3.2	20
39	Perfluoro-tagged rhodium and ruthenium nanoparticles immobilized on silica gel as highly active catalysts for hydrogenation of arenes under mild conditions. New Journal of Chemistry, 2013, 37, 278-282.	2.8	22
40	Sol–gel immobilized aryl iodides for the catalytic oxidative α-tosyloxylation of ketones. Reactive and Functional Polymers, 2013, 73, 192-199.	4.1	10
41	Asymmetric Synthesis of <scp>l</scp> -Carbidopa Based on a Highly Enantioselective α-Amination. Organic Letters, 2013, 15, 1448-1451.	4.6	28
42	Donnan exclusion driven intermatrix synthesis of reusable polymer stabilized palladium nanocatalysts. Catalysis Today, 2012, 193, 207-212.	4.4	18
43	Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants. Catalysis Today, 2012, 193, 200-206.	4.4	23
44	Palladium Nanoparticles in Suzuki Cross ouplings: Tapping into the Potential of Tris″midazolium Salts for Nanoparticle Stabilization. Advanced Synthesis and Catalysis, 2012, 354, 651-662.	4.3	59
45	The Heck Reaction of Allylic Alcohols Catalyzed by Palladium Nanoparticles in Water: Chemoenzymatic Synthesis of (<i>R</i>)â€(â^)â€Rhododendrol. ChemCatChem, 2011, 3, 347-353.	3.7	80
46	Azodicarboxylates as Electrophilic Aminating Reagents. Current Organic Chemistry, 2011, 15, 1539-1577.	1.6	48
47	Perfluoro-Tagged Gold Nanoparticles Immobilized on Fluorous Silica Gel: A Reusable Catalyst for the Benign Oxidation and Oxidative Esterification of Alcohols. ChemSusChem, 2010, 3, 772-772.	6.8	0
48	Waterâ€Soluble Palladium Nanoparticles: Click Synthesis and Applications as a Recyclable Catalyst in Suzuki Crossâ€Couplings in Aqueous Media. European Journal of Organic Chemistry, 2010, 2010, 5090-5099.	2.4	55
49	Perfluoro-tagged, phosphine-free palladium nanoparticles supported on silica gel: application to alkynylation of aryl halides, Suzuki–Miyaura cross-coupling, and Heck reactions under aerobic conditions. Green Chemistry, 2010, 12, 150-158.	9.0	108
50	Donnan-exclusion-driven distribution of catalytic ferromagnetic nanoparticles synthesized in polymeric fibers. Dalton Transactions, 2010, 39, 2579.	3.3	31
51	Direct Assembly of Polyarenes via Câ^C Coupling Using PIFA/BF ₃ ·Et ₂ O. Journal of the American Chemical Society, 2010, 132, 17980-17982.	13.7	56
52	Perfluoroâ€Tagged Gold Nanoparticles Immobilized on Fluorous Silica Gel: A Reusable Catalyst for the Benign Oxidation and Oxidative Esterification of Alcohols. ChemSusChem, 2009, 2, 1036-1040.	6.8	23
53	Water-soluble metal nanoparticles with PEG-tagged 15-membered azamacrocycles as stabilizers. Dalton Transactions, 2009, , 7748.	3.3	30
54	Alkynylation of aryl halides with perfluoro-tagged palladium nanoparticles immobilized on silica gel under aerobic, copper- and phosphine-free conditions in water. Organic and Biomolecular Chemistry, 2009, 7, 2270.	2.8	35

ALEXANDR SHAFIR

#	Article	IF	CITATIONS
55	Catalytically active palladium nanoparticles embedded in an organic-inorganic fluorinated hybrid material. Arkivoc, 2009, 2010, 181-190.	0.5	1
56	Zinc(II) oxide: an efficient catalyst for selective transesterification of β-ketoesters. Tetrahedron, 2008, 64, 9258-9263.	1.9	41
57	An Improved Cu-Based Catalyst System for the Reactions of Alcohols with Aryl Halides. Journal of Organic Chemistry, 2008, 73, 284-286.	3.2	226
58	Palladium Nanoparticles Supported on an Organicâ^'Inorganic Fluorinated Hybrid Material. Application to Microwave-Based Heck Reaction. Organic Letters, 2008, 10, 3215-3218.	4.6	78
59	N- versus O-Arylation of Aminoalcohols:Â Orthogonal Selectivity in Copper-Based Catalysts. Journal of the American Chemical Society, 2007, 129, 3490-3491.	13.7	288
60	Highly Selective Room-Temperature Copper-Catalyzed Câ^'N Coupling Reactions. Journal of the American Chemical Society, 2006, 128, 8742-8743.	13.7	406
61	Synthesis and characterization of mono \hat{l}^2 -diketiminatosamarium amides and hydrocarbyls. Dalton Transactions, 2005, , 1387-1393.	3.3	53
62	Synthesis and X-ray structures of metallocenium diamines of iron and cobalt. Polyhedron, 2004, 23, 2937-2942.	2.2	10
63	Zirconium complexes incorporating diaryldiamidoferrocene ligands: generation of cationic derivatives and polymerization activity towards ethylene and 1-hexene. Inorganica Chimica Acta, 2003, 345, 216-220.	2.4	32
64	Ferrocene-Based Olefin Polymerization Catalysts:Â Activation, Structure, and Intermediates. Organometallics, 2003, 22, 567-575.	2.3	67
65	Highly Isospecific Polymerization of Methyl Methacrylate with a Bis(pyrrolylaldiminato)samarium Hydrocarbyl Complex. Organometallics, 2003, 22, 3357-3359.	2.3	79
66	Highly diastereoselective reduction of ferrocene bis-imines with methyllithium and the formation of C2-symmetric Zr complexesElectronic supplementary information (ESI) available: experimental procedures and characterization data for all new compounds. See http://www.rsc.org/suppdata/cc/b3/b308360h/. Chemical Communications, 2003, , 2598.	4.1	9
67	Divalent Lanthanide Metal Complexes of a Triazacyclononane-Functionalized Tetramethylcyclopentadienyl Ligand:Â X-ray Crystal Structures of [C5Me4SiMe2(iPr2-tacn)]Lnl (Ln = Sm,) Tj ETQ)q12130.78	43 34 rgBT /O
68	Reactions of N,N′,N″-trimethyl-1,4,7-triazacyclononane with butyllithium reagents. Dalton Transactions RSC, 2002, , 3273-3274.	2.3	67
69	Formation of 1 \hat{a}^{q} 1 complexes of ferrocene-containing salen ligands with Mg, Ti and Zr. Dalton Transactions RSC, 2002, , 555-560.	2.3	46
70	Silylated 1,1â€~-Diaminoferrocene:  Ti and Zr Complexes of a New Chelating Diamide Ligand. Organometallics, 2001, 20, 1365-1369.	2.3	88
71	Stabilization of a Cationic Ti Center by a Ferrocene Moiety:Â A Remarkably Short Tiâ^'Fe Interaction in the Diamide {[(η5-C5H4NSiMe3)2Fe]TiCl}22+. Journal of the American Chemical Society, 2001, 123, 9212-9213.	13.7	86
72	Synthesis and Structure of a Linked-Bis(amidate) Ligand and Some Complexes with Titanium. Inorganic Chemistry, 2001, 40, 6069-6072.	4.0	29

#	Article	IF	CITATIONS
73	Synthesis, Structure, and Properties of 1,1â€~-Diamino- and 1,1â€~-Diazidoferrocene. Organometallics, 2000, 19, 3978-3982.	2.3	157
74	Alkali-metal complexes of a triazacyclononane-functionalized tetramethylcyclopentadienyl ligand â€. Dalton Transactions RSC, 2000, , 4018-4020.	2.3	16
75	Zirconium complexes of a tacn-derived amido ligand and ring-opening to form a new diamido-amino pincer. Chemical Communications, 2000, , 2135-2136.	4.1	24