
Phil C Garnsworthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62841/publications.pdf Version: 2024-02-01

DHIL C CARNEWORTHY

#	Article	IF	CITATIONS
1	Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Journal of Dairy Science, 2022, 105, 5124-5140.	3.4	5
2	Detection of Methane Eructation Peaks in Dairy Cows at a Robotic Milking Station Using Signal Processing. Animals, 2022, 12, 26.	2.3	5
3	Inclusion of Wheat Dried Distillers' Grains with Solubles from Bioethanol Plants in Diets for Dairy Cows. Animals, 2021, 11, 70.	2.3	2
4	Short-Term Variations of C18:1 Trans Fatty Acids in Plasma Lipoproteins and Ruminal Fermentation Parameters of Non-Lactating Cows Subjected to Ruminal Pulses of Oils. Animals, 2021, 11, 788.	2.3	0
5	Evaluation of rumen protected rapeseed expeller (NovaPro) as an alternative to soya bean meal in dairy cow diets. Animal Feed Science and Technology, 2021, 273, 114816.	2.2	3
6	Review: More effective linkages between science and policy are needed to minimize the negative environmental impacts of livestock production. Animal, 2021, 15, 100291.	3.3	7
7	Effects of dietary polyunsaturated fatty acid sources on expression of lipid-related genes in bovine milk somatic cells. Scientific Reports, 2020, 10, 14850.	3.3	10
8	Fatty acid transport in plasma from cows treated with ruminal pulses of fish oil and partially hydrogenated vegetable oil. Livestock Science, 2020, 236, 104018.	1.6	1
9	Effects of Dietary Vegetable Oils on Mammary Lipid-Related Genes in Holstein Dairy Cows. Animals, 2020, 10, 57.	2.3	5
10	Effect of Soybean Oil and Fish Oil on Lipid-Related Transcripts in Subcutaneous Adipose Tissue of Dairy Cows. Animals, 2020, 10, 54.	2.3	6
11	A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances, 2019, 5, eaav8391.	10.3	218
12	Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle. Animals, 2019, 9, 837.	2.3	60
13	Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream. Animals, 2019, 9, 568.	2.3	12
14	Long-Term Effects of Dietary Olive Oil and Hydrogenated Vegetable Oil on Expression of Lipogenic Genes in Subcutaneous Adipose Tissue of Dairy Cows. Veterinary Sciences, 2019, 6, 74.	1.7	4
15	Short communication: Heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows. Journal of Dairy Science, 2019, 102, 7277-7281.	3.4	46
16	Genome-Wide Association Studies for Methane Production in Dairy Cattle. Genes, 2019, 10, 995.	2.4	7
17	Effect of different exogenous fatty acids on the cytosolic triacylglycerol content in bovine mammary cells. Animal Nutrition, 2019, 5, 202-208.	5.1	10
18	Does the diurnal pattern of enteric methane emissions from dairy cows change over time?. Animal, 2018, 12, 2065-2070.	3.3	12

#	Article	IF	CITATIONS
19	Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 2018, 101, 6655-6674.	3.4	103
20	Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 2018, 24, 3368-3389.	9.5	166
21	The environmental costs and benefits of high-yield farming. Nature Sustainability, 2018, 1, 477-485.	23.7	193
22	Effect of Feeding System on Enteric Methane Emissions from Individual Dairy Cows on Commercial Farms. Land, 2018, 7, 26.	2.9	5
23	Effect of olive oil in dairy cow diets on the fatty acid profile and sensory characteristics of cheese. International Dairy Journal, 2018, 85, 8-15.	3.0	21
24	The environmental costs and benefits of high-yield farming. Nature Sustainability, 2018, 1, 477-485.	23.7	36
25	Transport of fatty acids within plasma lipoproteins in lactating and nonâ€lactating cows fed on fish oil and hydrogenated palm oil. Journal of Animal Physiology and Animal Nutrition, 2017, 101, 369-377.	2.2	8
26	Dietary options to reduce the environmental impact of milk production. Journal of Agricultural Science, 2017, 155, 334-347.	1.3	22
27	Impact of diet and fertility on greenhouse gas emissions and nitrogen efficiency of milk production. Livestock, 2017, 22, 140-144.	0.2	13
28	Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils. Animal, 2016, 10, 1821-1828.	3.3	32
29	Challenges and priorities for modelling livestock health and pathogens in the context of climate change. Environmental Research, 2016, 151, 130-144.	7.5	35
30	Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows. Archives of Animal Nutrition, 2016, 70, 322-332.	1.8	9
31	Influence of fish oil alone or in combination with hydrogenated palm oil on sensory characteristics and fatty acid composition of bovine cheese. Animal Feed Science and Technology, 2015, 205, 60-68.	2.2	23
32	Effects of changing cow production and fitness traits on profit and greenhouse gas emissions of UK dairy systems. Journal of Agricultural Science, 2015, 153, 138-151.	1.3	20
33	Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock. Measurement: Journal of the International Measurement Confederation, 2015, 66, 272-279.	5.0	40
34	Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils. Journal of Dairy Science, 2015, 98, 111-117.	3.4	33
35	Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal, 2014, 8, 262-274.	3.3	105
36	Variation in enteric methane emissions among cows on commercial dairy farms. Animal, 2014, 8, 1540-1546.	3.3	41

#	Article	IF	CITATIONS
37	Variation in composition of pre-grazed pasture herbage in the United Kingdom, 2006–2012. Animal Feed Science and Technology, 2014, 196, 139-144.	2.2	16
38	Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide. Journal of Dairy Science, 2014, 97, 6536-6546.	3.4	35
39	A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. Journal of Dairy Science, 2014, 97, 1835-1851.	3.4	104
40	Estimation of dry matter intake by n-alkanes in dairy cows fed TMR: effect of dosing technique and faecal collection time. Animal Production Science, 2014, 54, 1747.	1.3	5
41	Technical note: A novel approach to the detection of estrus in dairy cows using ultra-wideband technology. Journal of Dairy Science, 2013, 96, 6529-6534.	3.4	21
42	Mutations in genes involved in oestrous cycle associated expression of oestrus. Animal Reproduction Science, 2013, 142, 106-112.	1.5	11
43	Trans fatty acids and their role in the milk of dairy cows. Ciencia E Investigacion Agraria, 2013, 40, 449-473.	0.2	21
44	On-farm methane measurements during milking correlate with total methane production by individual dairy cows. Journal of Dairy Science, 2012, 95, 3166-3180.	3.4	131
45	Variation among individual dairy cows in methane measurements made on farm during milking. Journal of Dairy Science, 2012, 95, 3181-3189.	3.4	91
46	A mathematical model of the bovine oestrous cycle: Simulating outcomes of dietary and pharmacological interventions. Journal of Theoretical Biology, 2012, 313, 115-126.	1.7	8
47	Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction, 2010, 139, 57-69.	2.6	117
48	Short communication: Heritability of milk fatty acid composition and stearoyl-CoA desaturase indices in dairy cows. Journal of Dairy Science, 2010, 93, 1743-1748.	3.4	45
49	Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reproduction, Fertility and Development, 2009, 21, 419.	0.4	21
50	Oocyte quality in lactating dairy cows fed on high levels of n-3 and n-6 fatty acids. Reproduction, 2009, 138, 771-781.	2.6	79
51	Effect of dietary-induced changes in plasma insulin concentrations during the early post partum period on pregnancy rate in dairy cows. Reproduction, 2009, 137, 759-768.	2.6	90
52	Modelling responses to nutritional, endocrine and genetic strategies to increase fertility in the UK dairy herd. Veterinary Journal, 2009, 180, 356-362.	1.7	12
53	Mathematical Modeling of Glucose Homeostasis and Its Relationship With Energy Balance and Body Fat. Obesity, 2009, 17, 632-639.	3.0	17
54	Effects of bypass fat on energy balance, milk production and reproduction in grazing crossbred cows in the tropics. Livestock Science, 2009, 121, 64-71.	1.6	8

#	Article	IF	CITATIONS
55	Energy balance, milk production and reproduction in grazing crossbred cows in the tropics with and without cereal supplementation. Livestock Science, 2009, 122, 227-233.	1.6	19
56	Effect of site of starch digestion on metabolic hormones and ovarian function in dairy cows. Livestock Science, 2009, 125, 161-168.	1.6	13
57	Effects of Freeze-dried Citrus Peel on Feed Preservation, Aflatoxin Contamination and In vitro Ruminal Fermentation. Asian-Australasian Journal of Animal Sciences, 2009, 22, 674-680.	2.4	14
58	Diet-induced milk fat depression: Association with changes in milk fatty acid composition and fluidity of milk fat. Livestock Science, 2008, 115, 319-331.	1.6	66
59	Nutrition, Metabolism, and Fertility in Dairy Cows: 1. Dietary Energy Source and Ovarian Function. Journal of Dairy Science, 2008, 91, 3814-3823.	3.4	70
60	Nutrition, Metabolism, and Fertility in Dairy Cows: 2. Dietary Fatty Acids and Ovarian Function. Journal of Dairy Science, 2008, 91, 3824-3833.	3.4	41
61	Nutrition, Metabolism, and Fertility in Dairy Cows: 3. Amino Acids and Ovarian Function. Journal of Dairy Science, 2008, 91, 4190-4197.	3.4	21
62	Integration of physiological mechanisms that influence fertility in dairy cows. Animal, 2008, 2, 1144-1152.	3.3	80
63	Feeding frequency has diet-dependent effects on plasma hormone concentrations but does not affect oocyte quality in dairy heifers fed fibre- or starch-based diets. Animal, 2008, 2, 1361-1370.	3.3	4
64	Impact of Dietary Fatty Acids on Oocyte Quality and Development in Lactating Dairy Cows1. Biology of Reproduction, 2007, 77, 9-17.	2.7	127
65	Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology, 2007, 68, S22-S29.	2.1	45
66	Extraction and Quantitative Analysis of Stearoyl-Coenzyme A Desaturase mRNA from Dairy Cow Milk Somatic Cells. Journal of Dairy Science, 2007, 90, 4128-4136.	3.4	29
67	Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. Journal of Applied Microbiology, 2007, 103, 551-556.	3.1	45
68	Biohydrogenation Pathways for Linoleic and Linolenic Acids by Orpinomyces Rumen Fungus. Asian-Australasian Journal of Animal Sciences, 2007, 20, 1694-1698.	2.4	4
69	Factors influencing biohydrogenation and conjugated linoleic acid production by mixed rumen fungi. Journal of Microbiology, 2007, 45, 199-204.	2.8	4
70	Variation of Milk Citrate with Stage of Lactation and De Novo Fatty Acid Synthesis in Dairy Cows. Journal of Dairy Science, 2006, 89, 1604-1612.	3.4	131
71	Supplementation of Essential Oil Extracted from Citrus Peel to Animal Feeds Decreases Microbial Activity and Aflatoxin Contamination without Disrupting In vitro Ruminal Fermentation. Asian-Australasian Journal of Animal Sciences, 2006, 19, 1617-1622.	2.4	12
72	Estimation of genetic variation in A9-desaturase enzyme activity in dairy cows. Proceedings of the British Society of Animal Science, 2005, 2005, 52-52.	0.0	5

#	Article	IF	CITATIONS
73	Short Communication: Effect of Production Variables on the Cis-9, Trans-11 Conjugated Linoleic Acid Content of Cows' Milk. Journal of Dairy Science, 2005, 88, 2714-2717.	3.4	23
74	Fertility in the high-producing dairy cow. Livestock Science, 2004, 86, 125-135.	1.2	298
75	The environmental impact of fertility in dairy cows: a modelling approach to predict methane and ammonia emissions. Animal Feed Science and Technology, 2004, 112, 211-223.	2.2	139
76	Technical Note: A Rapid Lipid Separation Method for Determining Fatty Acid Composition of Milk. Journal of Dairy Science, 2004, 87, 3785-3788.	3.4	150
77	Estimation of dry-matter intake and digestibility in group-fed dairy cows using near infrared reflectance spectroscopy. Animal Science, 2004, 79, 327-334.	1.3	22
78	Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livestock Science, 2003, 79, 47-59.	1.2	272
79	Effects of circulating progesterone and insulin on early embryo development in beef heifers. Animal Reproduction Science, 2003, 79, 71-79.	1.5	36
80	Relationship between lice infestation and leather damage in cattle. Veterinary Record, 2003, 153, 255-259.	0.3	18
81	Dietary manipulation of conjugated linoleic acid in ruminant products. Proceedings of the British Society of Animal Science, 2003, 2003, 219-220.	0.0	0
82	Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction, 2002, 123, 419-427.	2.6	171
83	Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows' milk. Animal Science, 2002, 74, 163-176.	1.3	144
84	The effect of increased dietary intake on superovulatory response to FSH in heifers. Theriogenology, 2002, 57, 1591-1602.	2.1	37
85	Increasing the digestible undegraded protein intake of lactating dairy cows by feeding fishmeal or a rumen protected vegetable protein blend. Animal Feed Science and Technology, 2002, 96, 69-81.	2.2	12
86	Δ9 -desaturase activity in the mammary gland of lactating dairy cows. Proceedings of the British Society of Animal Science, 2002, 2002, 181-181.	0.0	1
87	Conjugated linoleic acid in cows milk: independent effects of dietary linoleic and linolenic fatty acids. Proceedings of the British Society of Animal Science, 2001, 2001, 80-80.	0.0	0
88	Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. Journal of Agricultural Science, 2000, 135, 409-417.	1.3	67
89	Changes in the conjugated linoleic acid content of milk from dairy cows throughout the year. BSAP Occasional Publication, 2000, 25, 125-129.	0.0	0
90	Rumen digestibility of starch and nitrogen in near-isogenic lines of wheat. Animal Feed Science and Technology, 2000, 85, 33-40.	2.2	7

#	Article	IF	CITATIONS
91	Estimation of intake and digestibility of forage-based diets in group-fed dairy cows using alkanes as markers. Journal of Agricultural Science, 1999, 133, 419-425.	1.3	29
92	The occurrence of conjugated linoleic acid in the milk of dairy cows. Proceedings of the British Society of Animal Science, 1999, 1999, 209-209.	0.0	0
93	The effects on milk yield and composition of incorporating lactose into the diet of dairy cows given protected fat. Animal Science, 1996, 62, 1-3.	1.3	13
94	Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. Journal of Agricultural Science, 1995, 124, 463-472.	1.3	92
95	The effect of supplementing grass silage with barley on digestibility, in sacco degradability, rumen fermentation and methane production in sheep at two levels of intake. Animal Feed Science and Technology, 1995, 55, 9-33.	2.2	67
96	The effect of alkali treatment of cereal straws on digestibility and methane production by sheep. Animal Feed Science and Technology, 1994, 49, 245-259.	2.2	22
97	The effects of dietary fibre and starch concentrations on the response by dairy cows to body condition at calving. Animal Science, 1993, 57, 15-21.	1.3	5
98	The nutritive value of wheat and oat silages ensiled on three cutting dates. Journal of Agricultural Science, 1993, 121, 233-240.	1.3	9
99	The influence of the fat concentration of the diet on the response by dairy cows to body condition at calving. Animal Science, 1992, 54, 7-13.	1.3	22
100	The effect of patterns of rumen fermentation on the response by dairy cows to dietary protein concentration. British Journal of Nutrition, 1990, 63, 177-186.	2.3	24
101	Feeding calcium salts of fatty acids in high-starch or high-fibre compound supplements to lactating cows at grass. Animal Science, 1990, 51, 441-447.	1.3	11
102	THE IMPORTANCE OF INTAKE IN FEED EVALUATION. , 1990, , 147-160.		5
103	The interaction between dietary fibre level and protein degradability in dairy cows. Animal Science, 1989, 48, 271-281.	1.3	17
104	The effects of dietary energy content on the response of dairy cows to body condition at calving. Animal Science, 1989, 49, 183-191.	1.3	20
105	Responses of British Friesian steers with or without implants of oestradiol-17β to undegradable dietary protein. Animal Science, 1988, 46, 181-193.	1.3	5
106	The effects of body condition at calving and dietary protein content on dry-matter intake and performance in lactating dairy cows given diets of low energy content. Animal Science, 1988, 47, 321-333.	1.3	25
107	The influence of body condition at calving and dietary protein supply on voluntary food intake and performance in dairy cows. Animal Science, 1987, 44, 347-353.	1.3	79
108	Protein nutrition of growing cattle: food intake and growth responses to rumen degradable protein and undegradable protein. Animal Science, 1987, 45, 383-394.	1.3	10

0

#	Article	IF	CITATIONS
109	The effect of feeding period and trenbolone acetate on the potential of culled dairy cows for beef production. Animal Science, 1986, 43, 385-390.	1.3	6
110	The effects of body condition at calving, food intake and performance in early lactation on blood composition of dairy cows given complete diets. Animal Science, 1982, 35, 121-125.	1.3	24
111	The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Animal Science, 1982, 35, 113-119.	1.3	205

112 FATTY ACIDS AND FERTILITY IN DAIRY COWS. , 0, , 1-20.