

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6283656/publications.pdf Version: 2024-02-01

KUMTU

#	Article	IF	CITATIONS
1	Molecular Dosimetry of DNA Adducts in Rats Exposed to Vinyl Acetate Monomer. Toxicological Sciences, 2022, 185, 197-207.	3.1	4
2	Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice. Environmental Health Perspectives, 2022, 130, 27013.	6.0	20
3	Developmental pyrethroid exposure and age influence phenotypes in a Chd8 haploinsufficient autism mouse model. Scientific Reports, 2022, 12, 5555.	3.3	9
4	Toward Elucidating the Human Gut Microbiota–Brain Axis: Molecules, Biochemistry, and Implications for Health and Diseases. Biochemistry, 2022, 61, 2806-2821.	2.5	6
5	A Review of Stable Isotope Labeling and Mass Spectrometry Methods to Distinguish Exogenous from Endogenous DNA Adducts and Improve Dose–Response Assessments. Chemical Research in Toxicology, 2022, 35, 7-29.	3.3	8
6	Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods. Environmental Health Perspectives, 2022, 130, 55001.	6.0	5
7	Development of LC-HRMS untargeted analysis methods for nasal epithelial lining fluid exposomics. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 847-854.	3.9	5
8	Bioaccessibility of arsenic from contaminated soils and alteration of the gut microbiome in an in vitro gastrointestinal model. Environmental Pollution, 2022, 309, 119753.	7.5	5
9	LC–MS/MS Analysis of the Formation and Loss of DNA Adducts in Rats Exposed to Vinyl Acetate Monomer through Inhalation. Chemical Research in Toxicology, 2021, 34, 793-803.	3.3	5
10	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	9.8	19
11	High-Resolution Metabolomics of 50 Neurotransmitters and Tryptophan Metabolites in Feces, Serum, and Brain Tissues Using UHPLC-ESI-Q Exactive Mass Spectrometry. ACS Omega, 2021, 6, 8094-8103.	3.5	7
12	Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology, 2021, 452, 152696.	4.2	2
13	The gut microbiome and arsenic-induced disease—iAs metabolism in mice. Current Environmental Health Reports, 2021, 8, 89-97.	6.7	18
14	Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nature Communications, 2021, 12, 3105.	12.8	82
15	Detection of gut microbiota and pathogen produced N-acyl homoserine in host circulation and tissues. Npj Biofilms and Microbiomes, 2021, 7, 53.	6.4	20
16	Metabolites from midtrimester plasma of pregnant patients at high risk for preterm birth. American Journal of Obstetrics & Gynecology MFM, 2021, 3, 100393.	2.6	8
17	High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nature Communications, 2021, 12, 6000.	12.8	68
18	Effects of Acute 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposure on the Circulating and Cecal Metabolome Profile. International Journal of Molecular Sciences, 2021, 22, 11801.	4.1	2

#	Article	IF	CITATIONS
19	Metformin for Treatment of Cytopenias in Children and Young Adults with Fanconi Anemia. Blood, 2021, 138, 1102-1102.	1.4	1
20	Effects of Gut Microbiome on Carcinogenic DNA Damage. Chemical Research in Toxicology, 2020, 33, 2130-2138.	3.3	10
21	Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science, 2020, 370, .	12.6	260
22	Biomarkers of Environmental Toxicants: Exposure and Biological Effects. Toxics, 2020, 8, 37.	3.7	9
23	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics, 2020, 8, 19.	3.7	66
24	Metabolite Profiling of the Gut Microbiome in Mice with Dietary Administration of Black Raspberries. ACS Omega, 2020, 5, 1318-1325.	3.5	10
25	Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reproductive Toxicology, 2020, 98, 1-12.	2.9	67
26	Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Critical Reviews in Toxicology, 2020, 50, 885-918.	3.9	6
27	An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Critical Reviews in Toxicology, 2020, 50, 919-952.	3.9	7
28	Pathology in Ecological Research With Implications for One Health: Session Summary. Toxicologic Pathology, 2019, 47, 1072-1075.	1.8	5
29	Lipid and Cholesterol Homeostasis after Arsenic Exposure and Antibiotic Treatment in Mice: Potential Role of the Microbiota. Environmental Health Perspectives, 2019, 127, 97002.	6.0	40
30	Quantitative proteomics reveals systematic dysregulations of liver protein metabolism in sucralose-treated mice. Journal of Proteomics, 2019, 196, 1-10.	2.4	22
31	Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2′-deoxyguanosine in mice. Toxicology and Applied Pharmacology, 2019, 377, 114633.	2.8	6
32	Chronic Arsenic Exposure Induces Oxidative Stress and Perturbs Serum Lysolipids and Fecal Unsaturated Fatty Acid Metabolism. Chemical Research in Toxicology, 2019, 32, 1204-1211.	3.3	30
33	Microorganisms in the Placenta: Links to Early-Life Inflammation and Neurodevelopment in Children. Clinical Microbiology Reviews, 2019, 32, .	13.6	24
34	Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Scientific Reports, 2019, 9, 4363.	3.3	22
35	Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn's Disease. Molecules, 2019, 24, 449.	3.8	55
36	Evaluation of inhaled low-dose formaldehyde-induced DNA adducts and DNA–protein cross-links by liquid chromatography–tandem mass spectrometry. Archives of Toxicology, 2019, 93, 763-773.	4.2	29

#	Article	IF	CITATIONS
37	Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic. Journal of Proteome Research, 2019, 18, 970-981.	3.7	16
38	The Carbamate Aldicarb Altered the Gut Microbiome, Metabolome, and Lipidome of C57BL/6J Mice. Chemical Research in Toxicology, 2019, 32, 67-79.	3.3	37
39	Serum Metabolomics Reveals That Gut Microbiome Perturbation Mediates Metabolic Disruption Induced by Arsenic Exposure in Mice. Journal of Proteome Research, 2019, 18, 1006-1018.	3.7	19
40	Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Archives of Toxicology, 2019, 93, 25-35.	4.2	63
41	Accurate Measurement of Formaldehyde-Induced DNA–Protein Cross-Links by High-Resolution Orbitrap Mass Spectrometry. Chemical Research in Toxicology, 2018, 31, 350-357.	3.3	18
42	Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mammalian Genome, 2018, 29, 63-79.	2.2	27
43	The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicology Letters, 2018, 283, 52-57.	0.8	28
44	Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environmental Health Perspectives, 2018, 126, 017005.	6.0	29
45	Characterization of the Functional Changes in Mouse Gut Microbiome Associated with Increased <i>Akkermansia muciniphila</i> Population Modulated by Dietary Black Raspberries. ACS Omega, 2018, 3, 10927-10937.	3.5	49
46	Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules, 2018, 23, 367.	3.8	75
47	Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chemical Research in Toxicology, 2017, 30, 996-1005.	3.3	141
48	Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 2017, 107, 530-539.	3.6	129
49	Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicology and Applied Pharmacology, 2017, 331, 142-153.	2.8	54
50	Editor's Highlight: Organophosphate Diazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicological Sciences, 2017, 157, 354-364.	3.1	33
51	Nicotine Alters the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific Manner. Chemical Research in Toxicology, 2017, 30, 2110-2119.	3.3	66
52	The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 2017, 160, 193-204.	3.1	101
53	Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacology & Toxicology, 2017, 18, 46.	2.4	37
54	Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Frontiers in Physiology, 2017, 8, 487.	2.8	184

#	Article	IF	CITATIONS
55	The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 2017, 12, e0178426.	2.5	175
56	Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells. Environmental Health Perspectives, 2017, 125, 097019.	6.0	17
57	Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environmental Health Perspectives, 2017, 125, 198-206.	6.0	96
58	Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome. Chemical Research in Toxicology, 2016, 29, 949-951.	3.3	63
59	Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis. Environmental Health Perspectives, 2014, 122, 284-291.	6.0	435
60	Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism. Chemical Research in Toxicology, 2014, 27, 172-174.	3.3	74
61	Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation. Chemical Research in Toxicology, 2013, 26, 1893-1903.	3.3	73
62	Formaldehyde Carcinogenicity Research. Toxicologic Pathology, 2013, 41, 181-189.	1.8	183
63	Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol. Toxicological Sciences, 2012, 126, 28-38.	3.1	25
64	Use of LC-MS/MS and Stable Isotopes to Differentiate Hydroxymethyl and Methyl DNA Adducts from Formaldehyde and Nitrosodimethylamine. Chemical Research in Toxicology, 2012, 25, 664-675.	3.3	40
65	Serum Metabolomics in a <i>Helicobacter hepaticus</i> Mouse Model of Inflammatory Bowel Disease Reveal Important Changes in the Microbiome, Serum Peptides, and Intermediary Metabolism. Journal of Proteome Research, 2012, 11, 4916-4926.	3.7	51
66	Determination of <i>N</i> ^{<i>2</i>} -Hydroxymethyl-dG Adducts in the Nasal Epithelium and Bone Marrow of Nonhuman Primates Following ¹³ CD ₂ -Formaldehyde Inhalation Exposure. Chemical Research in Toxicology, 2011, 24, 162-164.	3.3	80
67	Molecular Dosimetry of <i>N</i> ² -Hydroxymethyl-dG DNA Adducts in Rats Exposed to Formaldehyde. Chemical Research in Toxicology, 2011, 24, 159-161.	3.3	79
68	Endogenous versus Exogenous DNA Adducts: Their Role in Carcinogenesis, Epidemiology, and Risk Assessment. Toxicological Sciences, 2011, 120, S130-S145.	3.1	282
69	Distribution of DNA Adducts Caused by Inhaled Formaldehyde Is Consistent with Induction of Nasal Carcinoma but Not Leukemia. Toxicological Sciences, 2010, 116, 441-451.	3.1	144
70	Structural Characterization of Formaldehyde-Induced Cross-Links Between Amino Acids and Deoxynucleosides and Their Oligomers. Journal of the American Chemical Society, 2010, 132, 3388-3399.	13.7	145
71	Formation of S-[1-(N2-Deoxyguanosinyl)methyl]glutathione between Glutathione and DNA Induced by Formaldehyde. Journal of the American Chemical Society, 2009, 131, 3414-3415.	13.7	37
72	Formaldehyde-Induced Histone Modifications in Vitro. Chemical Research in Toxicology, 2008, 21, 1586-1593.	3.3	36

#	Article	IF	CITATIONS
73	A Black Raspberry-Rich Diet Protects From Dextran Sulfate Sodium-Induced Intestinal Inflammation and Host Metabolic Perturbation in Association With Increased Aryl Hydrocarbon Receptor Ligands in the Gut Microbiota of Mice. Frontiers in Nutrition, 0, 9, .	3.7	4