
Julia E M S Nabel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
2	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
3	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
4	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
5	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
6	Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5, eaax1396.	10.3	755
7	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
8	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	9.9	616
9	Developments in the MPIâ€M Earth System Model version 1.2 (MPIâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	3.8	582
10	Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 2020, 17, 1343-1365.	3.3	323
11	Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 2017, 10, 79-84.	12.9	284
12	Global and regional drivers of land-use emissions in 1961–2017. Nature, 2021, 589, 554-561.	27.8	256
13	Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 2018, 562, 110-114.	27.8	240
14	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	18.8	152
15	Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24, 1485-1509.	4.9	130
16	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	18.8	101
17	Using dynamic vegetation models to simulate plant range shifts. Ecography, 2014, 37, 1184-1197.	4.5	89
18	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	4.0	63

JULIA E M S NABEL

#	Article	IF	CITATIONS
19	Sources of Uncertainty in Regional and Global Terrestrial CO ₂ Exchange Estimates. Global Biogeochemical Cycles, 2020, 34, e2019GB006393.	4.9	59
20	Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific Reports, 2016, 6, 39748.	3.3	57
21	Forest production efficiency increases with growth temperature. Nature Communications, 2020, 11, 5322.	12.8	57
22	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50
23	Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology, 2021, 27, 3336-3349.	9.5	50
24	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	3.3	49
25	Climateâ€Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Clobal Products. Clobal Biogeochemical Cycles, 2020, 34, e2020CB006613.	4.9	36
26	European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data. Earth System Science Data, 2020, 12, 961-1001.	9.9	31
27	Contrasting effects of CO ₂ fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO ₂ exchange. Atmospheric Chemistry and Physics, 2019, 19, 12361-12375.	4.9	30
28	Soil carbon response to land-use change: evaluation of a global vegetation model using observational meta-analyses. Biogeosciences, 2016, 13, 5661-5675.	3.3	29
29	Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches. Earth System Dynamics, 2021, 12, 635-670.	7.1	29
30	Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	28
31	Comparison of forest aboveâ€ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observationâ€based estimates. Global Change Biology, 2020, 26, 3997-4012.	9.5	25
32	Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation. Earth System Dynamics, 2021, 12, 745-762.	7.1	22
33	Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences, 2021, 18, 5639-5668.	3.3	21
34	Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season. Biogeosciences, 2021, 18, 2405-2428.	3.3	19
35	Contrasting interannual atmospheric CO ₂ variabilities and their terrestrial mechanisms for two types of El Ni±os. Atmospheric Chemistry and Physics, 2018, 18, 10333-10345.	4.9	17
36	Accounting for forest age in the tile-based dynamic global vegetation model JSBACH4 (4.20p7; git) Tj ETQq0 0 C 185-200.) rgBT /Ove 3.6	erlock 10 Tf 50 16

JULIA E M S NABEL

#	Article	IF	CITATIONS
37	The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	16
38	Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System. Earth's Future, 2018, 6, 149-168.	6.3	15
39	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	9.5	14
40	Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change. Environmental Research Letters, 2017, 12, 084015.	5.2	13
41	Simulating growth-based harvest adaptive to future climate change. Biogeosciences, 2019, 16, 241-254.	3.3	10
42	Linking global terrestrial CO ₂ fluxes and environmental drivers: inferences from the Orbiting Carbon ObservatoryÂ2 satellite and terrestrial biospheric models. Atmospheric Chemistry and Physics, 2021, 21, 6663-6680.	4.9	10
43	Upscaling with the dynamic two-layer classification concept (D2C): TreeMig-2L, an efficient implementation of the forest-landscape model TreeMig. Geoscientific Model Development, 2015, 8, 3563-3577.	3.6	9
44	Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset. Earth System Dynamics, 2021, 12, 763-782.	7.1	9
45	Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.	5.2	8
46	Past and Future Climate Variability Uncertainties in the Global Carbon Budget Using the MPI Grand Ensemble. Global Biogeochemical Cycles, 2021, 35, e2021GB007019.	4.9	7
47	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	4.9	7
48	Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO ₂ . Biogeosciences, 2020, 17, 5721-5743.	3.3	6
49	Assessing Model Predictions of Carbon Dynamics in Global Drylands. Frontiers in Environmental Science, 2022, 10, .	3.3	5
50	Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations. Hydrology and Earth System Sciences, 2022, 26, 2045-2071.	4.9	5
51	Effects of Increased Drought in Amazon Forests Under Climate Change: Separating the Roles of Canopy Responses and Soil Moisture. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	2