Milan ChytrÃ¹/₂

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282269/publications.pdf

Version: 2024-02-01

ΜΙΙ ΑΝ CHYTRÃ1/2

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 2016, 19, 3-264.	1.9	905
3	Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 2002, 13, 79-90.	2.2	589
4	Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 2008, 45, 448-458.	4.0	450
5	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
6	SEPARATING HABITAT INVASIBILITY BY ALIEN PLANTS FROM THE ACTUAL LEVEL OF INVASION. Ecology, 2008, 89, 1541-1553.	3.2	330
7	Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 2006, 17, 809-818.	2.2	324
8	Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science, 2003, 14, 563-570.	2.2	260
9	The Global Index of Vegetationâ€Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 2011, 22, 582-597.	2.2	251
10	European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 2016, 19, 173-180.	1.9	247
11	The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions, 2009, 15, 891-903.	4.1	246
12	Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 2009, 20, 596-602.	2.2	233
13	European map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions, 2009, 15, 98-107.	4.1	205
14	EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 2020, 23, 648-675.	1.9	186
15	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
16	Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. Journal of Vegetation Science, 2004, 15, 415-422.	2.2	180
17	Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 69-81.	2.7	170
18	Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology, 2015, 96, 762-774.	3.2	166

#	Article	IF	CITATIONS
19	Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography, 2010, 19, 317-331.	5.8	154
20	Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications, 2018, 9, 4631.	12.8	139
21	Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobotanica, 2003, 38, 429-442.	0.9	128
22	ALIEN PLANTS IN TEMPERATE WEED COMMUNITIES: PREHISTORIC AND RECENT INVADERS OCCUPY DIFFERENT HABITATS. Ecology, 2005, 86, 772-785.	3.2	128
23	A comparative framework for broadâ€scale plotâ€based vegetation classification. Applied Vegetation Science, 2015, 18, 543-560.	1.9	126
24	Trends in species diversity and composition of urban vegetation over three decades. Journal of Vegetation Science, 2004, 15, 781-788.	2.2	107
25	Ellenberg-type indicator values for the Czech flora. Preslia, 2018, 90, 83-103.	2.8	107
26	Classification of <scp>T</scp> aiwan forest vegetation. Applied Vegetation Science, 2013, 16, 698-719.	1.9	106
27	Effects of plot size on the ordination of vegetation samples. Journal of Vegetation Science, 2006, 17, 465-472.	2.2	105
28	Interpretation of the lastâ€glacial vegetation of easternâ€central Europe using modern analogues from southern Siberia. Journal of Biogeography, 2008, 35, 2223-2236.	3.0	99
29	Alien plant invasions in European woodlands. Diversity and Distributions, 2017, 23, 969-981.	4.1	98
30	Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies. Journal of Vegetation Science, 2005, 16, 479-486.	2.2	97
31	Mid-Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic?. Holocene, 2015, 25, 716-726.	1.7	97
32	Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Global Ecology and Biogeography, 2012, 21, 545-555.	5.8	96
33	Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecology and Biogeography, 2007, 16, 668-678.	5.8	95
34	Projecting trends in plant invasions in Europe under different scenarios of future landâ€use change. Global Ecology and Biogeography, 2012, 21, 75-87.	5.8	89
35	Vegetation classification and biogeography of European floodplain forests and alder carrs. Applied Vegetation Science, 2016, 19, 147-163.	1.9	89
36	OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. Journal of Vegetation Science, 2010, 21, 287-299.	2.2	88

#	Article	IF	CITATIONS
37	Diversity of Central European urban biota: effects of human-made habitat types on plants and land snails. Journal of Biogeography, 2011, 38, 1152-1163.	3.0	88
38	Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?. Quaternary Science Reviews, 2014, 95, 60-79.	3.0	88
39	Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biological Conservation, 2012, 145, 179-184.	4.1	87
40	Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 2006, 17, 809.	2.2	86
41	Management of semi-natural grasslands benefiting both plant and insect diversity: The importance of heterogeneity and tradition. Agriculture, Ecosystems and Environment, 2017, 246, 243-252.	5.3	86
42	Pladias Database of the Czech flora and vegetation. Preslia, 2021, 93, 1-87.	2.8	86
43	Bias in vegetation databases? A comparison of stratified-random and preferential sampling. Journal of Vegetation Science, 2011, 22, 281-291.	2.2	83
44	Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecological Monographs, 2011, 81, 277-293.	5.4	83
45	Formalized reproduction of an expertâ€based phytosociological classification: A case study of subalpine tallâ€forb vegetation. Journal of Vegetation Science, 2003, 14, 601-610.	2.2	79
46	History and environment shape species pools and community diversity in European beech forests. Nature Ecology and Evolution, 2018, 2, 483-490.	7.8	78
47	Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Functional Ecology, 2018, 32, 799-808.	3.6	76
48	Assessing vegetation change using vegetationâ€plot databases: a risky business. Applied Vegetation Science, 2014, 17, 32-41.	1.9	74
49	Formalized classification of European fen vegetation at the alliance level. Applied Vegetation Science, 2017, 20, 124-142.	1.9	73
50	Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology, 2008, 196, 61-83.	1.6	72
51	Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. Applied Vegetation Science, 2009, 12, 167-176.	1.9	70
52	Linking Plant Functional Ecology to Island Biogeography. Trends in Plant Science, 2020, 25, 329-339.	8.8	70
53	Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism!. Folia Geobotanica, 2007, 42, 199-208.	0.9	69
54	From arable land to species-rich semi-natural grasslands: Succession in abandoned fields in a dry region of central Europe. Ecological Engineering, 2015, 77, 373-381.	3.6	67

#	Article	IF	CITATIONS
55	Phytosociological Data Give Biased Estimates of Species Richness. Journal of Vegetation Science, 2001, 12, 439.	2.2	66
56	Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Global Ecology and Biogeography, 2015, 24, 786-794.	5.8	66
57	Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations. Quaternary Science Reviews, 2017, 159, 103-115.	3.0	66
58	Towards unification of national vegetation classifications: A comparison of two methods for analysis of large data sets. Journal of Vegetation Science, 2000, 11, 295-306.	2.2	65
59	Habitats of relict terrestrial snails in southern Siberia: lessons for the reconstruction of palaeoenvironments of fullâ€glacial Europe. Journal of Biogeography, 2010, 37, 1450-1462.	3.0	65
60	Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biological Conservation, 2016, 201, 370-376.	4.1	65
61	Classification of European beech forests: a Gordian Knot?. Applied Vegetation Science, 2017, 20, 494-512.	1.9	65
62	Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. Journal of Ecology, 2018, 106, 2230-2241.	4.0	65
63	Title is missing!. , 1999, 143, 77-87.		64
64	Effects of abiotic factors on species richness and cover in Central European weed communities. Agriculture, Ecosystems and Environment, 2005, 109, 1-8.	5.3	61
65	Invasion success of alien plants: do habitat affinities in the native distribution range matter?. Global Ecology and Biogeography, 2009, 18, 372-382.	5.8	60
66	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	5.8	59
67	A quest for speciesâ€level indicator values for disturbance. Journal of Vegetation Science, 2016, 27, 628-636.	2.2	58
68	Heterogeneity-constrained random resampling of phytosociological databases. Journal of Vegetation Science, 2011, 22, 175-183.	2.2	57
69	Naturalization of European plants on other continents: The role of donor habitats. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13756-13761.	7.1	57
70	The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 2017, 26, 425-434.	5.8	57
71	Wetland vegetation of the class Phragmito-Magno-Caricetea in centralItaly. Phytocoenologia, 2013, 43, 67-102.	0.5	56
72	Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecology, 2012, 213, 591-602.	1.6	55

#	Article	IF	CITATIONS
73	Formalized classification of speciesâ€poor vegetation: a proposal of a consistent protocol for aquatic vegetation. Journal of Vegetation Science, 2015, 26, 791-803.	2.2	55
74	Where do they come from and where do they go? <scp>E</scp> uropean natural habitats as donors of invasive alien plants globally. Diversity and Distributions, 2013, 19, 199-214.	4.1	52
75	Classification of European and Mediterranean coastal dune vegetation. Applied Vegetation Science, 2018, 21, 533-559.	1.9	52
76	Alpha diversity of vascular plants in European forests. Journal of Biogeography, 2019, 46, 1919-1935.	3.0	52
77	European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas, 2015, 44, 638-657.	2.4	51
78	Effects of different fidelity measures and contexts on the determination of diagnostic species. Journal of Vegetation Science, 2009, 20, 130-137.	2.2	49
79	Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Applied Vegetation Science, 2011, 14, 230-241.	1.9	49
80	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
81	Vegetation survey: a new focus for <i>Applied Vegetation Science</i> . Applied Vegetation Science, 2011, 14, 435-439.	1.9	48
82	Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
83	Formalized classification of semi-dry grasslands in central and eastern Europe. Preslia, 2019, 91, 25-49.	2.8	47
84	The species richness–productivity relationship in the herb layer of European deciduous forests. Global Ecology and Biogeography, 2012, 21, 657-667.	5.8	46
85	A higherâ€level classification of the Pannonian and western Pontic steppe grasslands (Central and) Tj ETQq1 1	0.784314 1.9	rgBT /Overloci
86	Plant dispersal strategies. Preslia, 2018, 90, 1-22.	2.8	46
87	A modern analogue of the Pleistocene steppeâ€ŧundra ecosystem in southern Siberia. Boreas, 2019, 48, 36-56.	2.4	44
88	Temperate trees and shrubs as global invaders: the relationship between invasiveness and native distribution depends on biological traits. Biological Invasions, 2014, 16, 577-589.	2.4	43
89	Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 2015, 26, 1080-1089.	2.2	43
90	Nativeâ€range habitats of invasive plants: are they similar to invadedâ€range habitats and do they differ according to the geographical direction of invasion?. Diversity and Distributions, 2015, 21, 312-321.	4.1	43

#	Article	IF	CITATIONS
91	Alien flora across European coastal dunes. Applied Vegetation Science, 2020, 23, 317-327.	1.9	43
92	Supervised classification of plant communities with artificial neural networks. Journal of Vegetation Science, 2005, 16, 407-414.	2.2	42
93	Biotic homogenization of urban floras by alien species: the role of species turnover and richness differences. Journal of Vegetation Science, 2016, 27, 452-459.	2.2	42
94	Glacial refugia and mid-Holocene expansion delineate the current distribution of Castanea sativa in Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491, 152-160.	2.3	42
95	Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia, 2019, 91, 1-24.	2.8	42
96	Semiâ€supervised classification of vegetation: preserving the good old units and searching for new ones. Journal of Vegetation Science, 2014, 25, 1504-1512.	2.2	41
97	Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science, 2003, 14, 563.	2.2	40
98	Is phylogenetic diversity a good proxy for functional diversity of plant communities? A case study from urban habitats. Journal of Vegetation Science, 2016, 27, 1036-1046.	2.2	39
99	Diversity of hay meadows in the Czech Republic: major types and environmental gradients. Phytocoenologia, 2004, 34, 551-567.	0.5	38
100	Trends in species diversity and composition of urban vegetation over three decades. Journal of Vegetation Science, 2004, 15, 781.	2.2	38
101	Classification of the European marsh vegetation (<i>Phragmitoâ€Magnocaricetea</i>) to the association level. Applied Vegetation Science, 2020, 23, 297-316.	1.9	38
102	Potential replacement vegetation: an approach to vegetation mapping of cultural landscapes. Applied Vegetation Science, 1998, 1, 177-188.	1.9	37
103	Context-dependence of diagnostic species: A case study of the central european spruce forests. Folia Geobotanica, 2002, 37, 403-417.	0.9	37
104	Plant attributes determining the regional abundance of weeds on central European arable land. Journal of Biogeography, 2008, 35, 177-187.	3.0	37
105	High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. Journal of Vegetation Science, 2012, 23, 605-616.	2.2	37
106	Modelling the distribution and compositional variation of plant communities at the continental scale. Diversity and Distributions, 2018, 24, 978-990.	4.1	37
107	Semiâ€dry grasslands along a climatic gradient across Central Europe: Vegetation classification with validation. Journal of Vegetation Science, 2007, 18, 835-846.	2.2	36
108	The relationships of modern pollen spectra to vegetation and climate along a steppe–forest–tundra transition in southern Siberia, explored by decision trees. Holocene, 2008, 18, 1259-1271.	1.7	36

#	Article	IF	CITATIONS
109	Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe. Journal of Biogeography, 2010, 37, 767-780.	3.0	36
110	Species richness and species turnover in a successional heathland. Applied Vegetation Science, 2001, 4, 89-96.	1.9	35
111	Exposure-related forest-steppe: A diverse landscape type determined by topography and climate. Journal of Arid Environments, 2016, 135, 75-84.	2.4	35
112	Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. Journal of Biogeography, 2020, 47, 2210-2222.	3.0	35
113	Classification of the Mediterranean lowland to submontane pine forest vegetation. Applied Vegetation Science, 2021, 24, .	1.9	35
114	Diversity and Biotic Homogenization of Urban Land-Snail Faunas in Relation to Habitat Types and Macroclimate in 32 Central European Cities. PLoS ONE, 2013, 8, e71783.	2.5	34
115	Betaâ€diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography, 2018, 41, 1038-1048.	4.5	34
116	Weather fluctuations drive shortâ€ŧerm dynamics and longâ€ŧerm stability in plant communities: A 25â€year study in a Central European dry grassland. Journal of Vegetation Science, 2020, 31, 711-721.	2.2	34
117	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
118	Modelling the Last Glacial Maximum environments for a refugium of Pleistocene biota in the Russian Altai Mountains, Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438, 135-145.	2.3	33
119	Red List of Habitats of the Czech Republic. Ecological Indicators, 2019, 106, 105446.	6.3	33
120	Thermophilous oak forests in the Czech Republic: Syntaxonomical revision of theQuercetalia pubescenti-petraeae. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 221-258.	0.4	32
121	Beech forest communities in Bulgaria. Phytocoenologia, 2006, 36, 247-279.	0.5	32
122	Environmental factors influencing herb layer productivity in Central European oak forests: insights from soil and biomass analyses and a phytometer experiment. Plant and Soil, 2011, 342, 183-194.	3.7	32
123	Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2988-9.	7.1	32
124	High-resolution and large-extent mapping of plant species richness using vegetation-plot databases. Ecological Indicators, 2018, 89, 840-851.	6.3	32
125	Classification of the Hyrcanian forest vegetation, Northern Iran. Applied Vegetation Science, 2020, 23, 107-126.	1.9	32
126	Floristic diversity of an eastern Mediterranean dwarf shrubland: the importance of soil pH. Journal of Vegetation Science, 2010, 21, 1125-1137.	2.2	31

#	Article	IF	CITATIONS
127	Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 2016, 6, 4088-4101.	1.9	31
128	Long-term changes in the field layer of oak and oak-hornbeam forests under the impact of deer and mouflon. Folia Geobotanica Et Phytotaxonomica, 1993, 28, 225-245.	0.4	30
129	Snail faunas in the Southern Ural forests and their relations to vegetation: an analogue of the Early Holocene assemblages of Central Europe?. Journal of Molluscan Studies, 2010, 76, 1-10.	1.2	30
130	Towards a consistent classification of European grasslands. Applied Vegetation Science, 2013, 16, 518-520.	1.9	30
131	Surface pollen–vegetation relationships in the forest-steppe, taiga and tundra landscapes of the Russian Altai Mountains. Review of Palaeobotany and Palynology, 2009, 157, 253-265.	1.5	29
132	Habitat invasion research: where vegetation science and invasion ecology meet. Journal of Vegetation Science, 2014, 25, 1181-1187.	2.2	29
133	Phytosociological data give biased estimates of species richness. Journal of Vegetation Science, 2001, 12, 441-444.	2.2	28
134	Classification of weed vegetation of arable land in the Czech Republic and Slovakia. Folia Geobotanica, 2006, 41, 259-273.	0.9	28
135	Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns. Ecology and Evolution, 2016, 6, 1515-1526.	1.9	28
136	High Plant Diversity of Grasslands in a Landscape Context: A Comparison of Contrasting Regions in Central Europe. Folia Geobotanica, 2014, 49, 117-135.	0.9	27
137	Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 2002, 13, 79.	2.2	27
138	Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. Journal of Vegetation Science, 2004, 15, 415.	2.2	27
139	Dispersal limitation is stronger in communities of microorganisms than macroorganisms across Central European cities. Journal of Biogeography, 2012, 39, 1101-1111.	3.0	25
140	<i>Chamaecyparis</i> montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 2015, 30, 771-791.	1.5	25
141	The relationship between niche breadth and range size of beech (<i>Fagus</i>) species worldwide. Journal of Biogeography, 2021, 48, 1240-1253.	3.0	25
142	Neophyte invasions in European grasslands. Journal of Vegetation Science, 2021, 32, e12994.	2.2	25
143	Alien plant invasions in Mediterranean habitats: an assessment for Sicily. Biological Invasions, 2021, 23, 3091-3107.	2.4	25
144	Classification of inland Bolboschoenus-dominated vegetation in Central Europe. Phytocoenologia, 2009, 39, 205-215.	0.5	24

MILAN CHYTRÃ¹/2

#	Article	IF	CITATIONS
145	Weed vegetation and its conservation value in three management systems of Hungarian winter cereals on baseâ€rich soils. Weed Research, 2009, 49, 544-551.	1.7	24
146	Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiology Ecology, 2019, 95, .	2.7	24
147	Diversity loss in grasslands due to the increasing dominance of alien and native competitive herbs. Biodiversity and Conservation, 2019, 28, 2781-2796.	2.6	24
148	The biogeography of alien plant invasions in the Mediterranean Basin. Journal of Vegetation Science, 2021, 32, e12980.	2.2	24
149	Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants. Clobal Ecology and Biogeography, 2014, 23, 1366-1375.	5.8	23
150	Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology, 2015, 96, 3363-3373.	3.2	23
151	The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. Journal of Ecology, 2019, 107, 1038-1050.	4.0	23
152	Distribution maps of vegetation alliances in Europe. Applied Vegetation Science, 2022, 25, .	1.9	23
153	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	2.2	23
154	Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic. Biologia (Poland), 2011, 66, 266-274.	1.5	22
155	Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecological Indicators, 2017, 77, 357-367.	6.3	22
156	Facebook groups as citizen science tools for plant species monitoring. Journal of Applied Ecology, 2021, 58, 2018-2028.	4.0	22
157	Syntaxonomy of vegetation of Svjatoj Nos Peninsula, Lake Baikal 1. Non forest communities. Folia Geobotanica Et Phytotaxonomica, 1993, 28, 337-383.	0.4	21
158	Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift?. Ecography, 2010, 33, 578-589.	4.5	21
159	Vegetation diversity of mesic grasslands (<i>Arrhenatheretalia</i>) in the Iberian Peninsula. Applied Vegetation Science, 2014, 17, 780-796.	1.9	21
160	Diversity of lowland hay meadows and pastures inÂWestern and Central Europe. Applied Vegetation Science, 2017, 20, 702-719.	1.9	21
161	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	5.8	21
162	Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies. Journal of Vegetation Science, 2005, 16, 479.	2.2	21

Milan ChytrÃ¹/2

#	Article	IF	CITATIONS
163	Vegetation of the rock outcrops and screes in the forest-steppe and steppe belts of the Altai and Western Sayan Mts., southern Siberia. Phytocoenologia, 2006, 36, 509-545.	0.5	20
164	Exceptionally poor land snail fauna of central Yakutia (NE Russia): climatic and habitat determinants of species richness. Polar Biology, 2013, 36, 185-191.	1.2	20
165	The leaf economic and plant size spectra of European forest understory vegetation. Ecography, 2021, 44, 1311-1324.	4.5	20
166	Regional metacommunities in two coastal systems: spatial structure and drivers of plant assemblages. Journal of Biogeography, 2015, 42, 452-462.	3.0	19
167	Root hemiparasitic plants are associated with high diversity in temperate grasslands. Journal of Vegetation Science, 2017, 28, 184-191.	2.2	19
168	<scp>GRIMP</scp> : A machineâ€learning method for improving groups of discriminating species in expert systems for vegetation classification. Journal of Vegetation Science, 2019, 30, 5-17.	2.2	19
169	Phylogenetic diversity patterns in forests of a putative refugial area in Greece: A community level analysis. Forest Ecology and Management, 2019, 446, 226-237.	3.2	19
170	Progress in vegetation science: Trends over the past three decades and new horizons. Journal of Vegetation Science, 2019, 30, 1-4.	2.2	19
171	Optimal transformation of species cover for vegetation classification. Applied Vegetation Science, 2020, 23, 710-717.	1.9	19
172	Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 2021, 32, e13014.	2.2	19
173	Evaluating the stability of the classification of community data. Ecography, 2011, 34, 807-813.	4.5	18
174	The number of vegetation types in <scp>E</scp> uropean countries: major determinants and extrapolation to other regions. Journal of Vegetation Science, 2014, 25, 863-872.	2.2	18
175	WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia, 2015, 45, 187-194.	0.5	18
176	Mapping species richness of plant families in European vegetation. Journal of Vegetation Science, 2021, 32, e13035.	2.2	18
177	Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula. Acta Oecologica, 2015, 63, 36-46.	1.1	17
178	Regional differences in soil pH niche among dry grassland plants in Eurasia. Oikos, 2017, 126, 660-670.	2.7	17
179	National vegetation classification of the Czech Republic: a summary of the approach. Phytocoenologia, 2018, 48, 121-131.	0.5	17
180	Vegetation of the European mountain river gravel bars: A formalized classification. Applied Vegetation Science, 2021, 24, .	1.9	17

#	Article	IF	CITATIONS
181	What defines insularity for plants in edaphic islands?. Ecography, 2021, 44, 1249-1258.	4.5	17
182	Oak-hornbeam forests of central Europe. Preslia, 2020, 92, 1-34.	2.8	17
183	Ecology of <i>Tilia sibirica</i> in a continental hemiboreal forest, southern Siberia: An analogue of a glacial refugium of broad-leaved temperate trees?. Holocene, 2014, 24, 908-918.	1.7	16
184	Projecting potential future shifts in species composition of European urban plant communities. Diversity and Distributions, 2018, 24, 765-775.	4.1	16
185	Ecological specialization indices for species of the Czech flora. Preslia, 2019, 91, 93-116.	2.8	16
186	Central European forest–steppe: An ecosystem shaped by climate, topography and disturbances. Journal of Biogeography, 2022, 49, 1006-1020.	3.0	16
187	Phenological mapping in a topographically complex landscape by combining field survey with an irradiation model. Applied Vegetation Science, 1998, 1, 225-232.	1.9	15
188	Early vegetation succession on gravel bars of Czech Carpathian streams. Folia Geobotanica, 2018, 53, 317-332.	0.9	15
189	Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.	2.2	15
190	Plant functional and taxonomic diversity in European grasslands along climatic gradients. Journal of Vegetation Science, 2021, 32, e13027.	2.2	15
191	Vegetation surveys in the circumboreal coniferous forests: A review. Folia Geobotanica, 2002, 37, 365-382.	0.9	14
192	Interspecific associations in phytosociological data sets: how do they change between local and regional scale?. Plant Ecology, 2004, 173, 247-257.	1.6	14
193	Philip Grime's fourth corner: are there plant species adapted to high disturbance and low productivity?. Oikos, 2018, 127, 1125-1131.	2.7	14
194	Macroevolutionary patterns in European vegetation. Journal of Vegetation Science, 2021, 32, .	2.2	14
195	Diversity of bryophytes on treeless cliffs and talus slopes in a forested central European landscape. Journal of Bryology, 2005, 27, 35-46.	1.2	13
196	Conservation of the Mediterranean coastal pine woodlands: How can management support biodiversity?. Forest Ecology and Management, 2019, 443, 28-35.	3.2	13
197	Syntaxonomy of vegetation of the Svyatoi Nos peninsula, Lake Baikal 2. Forests and krummholz in comparison with other regions of northern Buryatia. Folia Geobotanica, 1998, 33, 31-75.	0.9	12
198	Plant communities of the Bol'Åįoj ÄŒivyrkuj River Valley, Barguzinskij Range, East Siberia. Phytocoenologia, 1995, 25, 399-434.	0.5	12

#	Article	IF	CITATIONS
199	European vegetation survey: The context of the case studies. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 113-115.	0.4	11
200	Plant species richness–productivity relationships in a low-productive boreal region. Plant Ecology, 2013, 214, 207-219.	1.6	11
201	Unimodal Latitudinal Pattern of Land-Snail Species Richness across Northern Eurasian Lowlands. PLoS ONE, 2014, 9, e104035.	2.5	11
202	No evidence for larger leaf trait plasticity in ecological generalists compared to specialists. Journal of Biogeography, 2017, 44, 511-521.	3.0	11
203	Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science, 2019, 30, 620-632.	2.2	11
204	Lifeâ€form diversity across temperate deciduous forests of Western Eurasia: A different story in the understory. Journal of Biogeography, 2021, 48, 2932-2945.	3.0	11
205	European Weed Vegetation Database – a gap-focused vegetation-plot database. Phytocoenologia, 2020, 50, 93-100.	0.5	11
206	Local ranges of phytosociological associations: are they reflected in numerical classification?. Biologia (Poland), 2006, 61, 71-77.	1.5	10
207	Environmental correlates of the Late Quaternary regional extinctions of large and small Palaearctic mammals. Ecography, 2018, 41, 516-527.	4.5	10
208	Similar responses of native and alien floras in European cities to climate. Journal of Biogeography, 2019, 46, 1406-1418.	3.0	10
209	Formalized reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation. Journal of Vegetation Science, 2003, 14, 601.	2.2	10
210	News from the Global Index of Vegetation-Plot Databases (GIVD): the metadata platform, available data, and their properties. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 77-82.	0.3	10
211	Czech National Phytosociological Database. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 345-345.	0.3	10
212	Insularity promotes plant persistence strategies in edaphic island systems. Global Ecology and Biogeography, 2022, 31, 753-764.	5.8	10
213	Mapping plant community ecology. Journal of Vegetation Science, 2017, 28, 1-3.	2.2	9
214	CircumMed Pine Forest Database: an electronic archive for Mediterranean and Submediterranean pine forest vegetation data. Phytocoenologia, 2019, 49, 311-318.	0.5	9
215	Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Applied Vegetation Science, 2021, 24, e12562.	1.9	9
216	Correlations between global and regional measures ofÂinvasiveness vary with region size. NeoBiota, 0, 16, 59-80.	1.0	9

#	Article	IF	CITATIONS
217	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	9
218	The need for and the requirements of EuroSL, an electronic taxonomic reference list of all Euro-pean plants. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 15-24.	0.3	9
219	Climate warming and extended droughts drive establishment and growth dynamics in temperate grassland plants. Agricultural and Forest Meteorology, 2022, 313, 108762.	4.8	9
220	Classification of the High-Mountain Coniferous Forests in Taiwan. Folia Geobotanica, 2012, 47, 373-401.	0.9	8
221	Genetic diversity and demographic history of the Siberian lime (Tilia sibirica). Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33, 9-17.	2.7	8
222	Phylogenetic structure of European forest vegetation. Journal of Biogeography, 2021, 48, 903-916.	3.0	8
223	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Clobal Ecology and Biogeography, 2021, 30, 1514-1531.	5.8	8
224	Current Vegetation of the Czech Republic. Plant and Vegetation, 2017, , 229-337.	0.6	8
225	Supervised classification of plant communities with artificial neural networks. Journal of Vegetation Science, 2005, 16, 407.	2.2	8
226	Effects of plot size on the ordination of vegetation samples. Journal of Vegetation Science, 2006, 17, 465.	2.2	8
227	Two sides of one medal: Arable weed vegetation of Europe in phytosociological data compared to agronomical weed surveys. Applied Vegetation Science, 2022, 25, .	1.9	8
228	Nomenclature Adjustments and New Syntaxa of the Arctic, Alpine and Oro-Mediterranean Vegetation. Hacquetia, 2015, 14, 277-288.	0.4	7
229	Plant Invasions in the Czech Republic. Plant and Vegetation, 2017, , 339-399.	0.6	7
230	Plant taxonomic and phylogenetic turnover increases toward climatic extremes and depends on historical factors in European beech forests. Journal of Vegetation Science, 2021, 32, .	2.2	7
231	Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Diversity and Distributions, 2021, 27, 2063-2076.	4.1	7
232	Phylogenetic structure of alien plant species pools from European donor habitats. Global Ecology and Biogeography, 2021, 30, 2354-2367.	5.8	7
233	Chapter 6 Habitats and Land Use as Determinants of Plant Invasions in the Temperate Zone of Europe. , 2009, , 66-80.		7
234	Semi-dry grasslands along a climatic gradient across Central Europe: Vegetation classification with validation. Journal of Vegetation Science, 2007, 18, 835.	2.2	7

#	Article	IF	CITATIONS
235	Database of Masaryk University's Vegetation Research in Siberia. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 290-290.	0.3	7
236	Alien plants tend to occur in species-poor communities. NeoBiota, 0, 73, 39-56.	1.0	7
237	Sticking around: Plant persistence strategies on edaphic islands. Diversity and Distributions, 2022, 28, 1850-1862.	4.1	7
238	<i>Applied Vegetation Science</i> in 2016: the leading journal promoting the application of vegetation science. Applied Vegetation Science, 2016, 19, 1-2.	1.9	6
239	Natural forests of Pinus pinea in western Turkey: a priority for conservation. Biodiversity and Conservation, 2020, 29, 3877-3898.	2.6	6
240	Classification of forest and shrubland vegetation in Mediterranean Turkey. Applied Vegetation Science, 2021, 24, e12589.	1.9	6
241	Forest snail diversity and its environmental predictors along a sharp climatic gradient in southern Siberia. Acta Oecologica, 2018, 88, 1-8.	1.1	5
242	Making them visible and usable — vegetationâ€plot observations from Fennoscandia based on historical speciesâ€quantity scales. Applied Vegetation Science, 2019, 22, 465-473.	1.9	5
243	Probabilistic key for identifying vegetation types in the field: A new method and Android application. Journal of Vegetation Science, 2019, 30, 1035-1038.	2.2	5
244	Hyrcanian Forest Vegetation Database. Phytocoenologia, 2019, 49, 209-210.	0.5	5
245	Habitats of Pleistocene megaherbivores reconstructed from the frozen fauna remains. Ecography, 2020, 43, 703-713.	4.5	5
246	Classification of European bog vegetation of the <i>Oxycoccoâ€5phagnetea</i> class. Applied Vegetation Science, 2022, 25, .	1.9	5
247	Temperate forests in continental <scp>E</scp> ast <scp>A</scp> sia. Applied Vegetation Science, 2015, 18, 3-4.	1.9	4
248	Natural habitat and vegetation types of river gravel bars in the Caucasus Mountains, Georgia. Folia Geobotanica, 2020, 55, 41-62.	0.9	4
249	Plant hunting: exploring the behaviour of amateur botanists in the field. Biodiversity and Conservation, 2021, 30, 3265-3278.	2.6	4
250	AgriWeedClim database: A repository of vegetation plot data from Central European arable habitats over 100 years. Applied Vegetation Science, 2022, 25, .	1.9	4
251	Competition, invasion effects versus invasiveness and fuzzy classification. Journal of Vegetation Science, 2011, 22, 1-5.	2.2	3
252	Functional types, climatic change and species richness. Journal of Vegetation Science, 2013, 24, 1-3.	2.2	3

#	Article	IF	CITATIONS
253	<scp>S</scp> ilver <scp>J</scp> ubilee of the journal and complexity of global change. Journal of Vegetation Science, 2014, 25, 1-3.	2.2	3
254	Spatial models and plant traits for conservation and restoration. Applied Vegetation Science, 2014, 17, 1-3.	1.9	3
255	How to publish a good journal in plant community ecology?. Journal of Vegetation Science, 2016, 27, 1-3.	2.2	3
256	Linking biodiversity to ecosystems: A task for plant community ecologists. Journal of Vegetation Science, 2018, 29, 1-3.	2.2	3
257	Niche and geographical expansions of North American trees and tall shrubs in Europe. Journal of Biogeography, 2022, 49, 1151-1161.	3.0	3
258	Diversity of the Western Carpathian flysch grasslands: Do extremely species-rich plant communities coincide with a high diversity of snails?. Biologia (Poland), 2014, 69, 202-213.	1.5	2
259	History of Botanical Research in the Czech Republic. Plant and Vegetation, 2017, , 25-87.	0.6	2
260	<i>Applied Vegetation Science</i> enters its 20th year. Applied Vegetation Science, 2017, 20, 1-4.	1.9	2
261	European Boreal Forest Vegetation Database. Phytocoenologia, 2020, 50, 79-92.	0.5	2
262	Calcicolous rock-outcrop lime forests of east-central Europe. Preslia, 2020, 92, 191-211.	2.8	2
263	Restoration and management of plant communities in <i>Applied Vegetation Science</i> . Applied Vegetation Science, 2022, 25, .	1.9	2
264	The effect of niche filtering on plant species abundance in temperate grassland communities. Functional Ecology, 0, , .	3.6	2
265	Collaboration networks and hot topics in the <i>Journal of Vegetation Science</i> . Journal of Vegetation Science, 2022, 33, .	2.2	2
266	Journal development, vegetation survey and the restoration of invaded ecosystems. Applied Vegetation Science, 2011, 14, 1-5.	1.9	1
267	Editors' Award, experimental approaches, functional traits and ecoinformatics. Journal of Vegetation Science, 2012, 23, 1-3.	2.2	1
268	Organic farming, vegetation restoration and survey. Applied Vegetation Science, 2013, 16, 1-4.	1.9	1
269	Transfer of scientific knowledge to practitioners: Do we need a reform of the journal policy?. Applied Vegetation Science, 2014, 17, 609-610.	1.9	1
270	Plant communities: their conservation assessment and surveys across continents and in the tropics. Applied Vegetation Science, 2015, 18, 1-2.	1.9	1

#	Article	IF	CITATIONS
271	<i>Journal of Vegetation Science</i> in 2015: journal growth, celebrations and awards. Journal of Vegetation Science, 2015, 26, 1-3.	2.2	1
272	Applied vegetation science addresses emerging global issues. Applied Vegetation Science, 2019, 22, 1-2.	1.9	1
273	Thirty years of theÂJournal of Vegetation Science. Journal of Vegetation Science, 2020, 31, 1-2.	2.2	1
274	Applied Vegetation Science in 2020: Editorial. Applied Vegetation Science, 2020, 23, 1-2.	1.9	1
275	Plant trait filtering is stronger in the herb layer than in the tree layer in Greek mountain forests. Ecological Indicators, 2021, 131, 108229.	6.3	1
276	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	1
277	Pladias platform: Technical description of the database structure. Biodiversity Data Journal, 2022, 10, e80167.	0.8	1
278	A breakthrough?. Folia Geobotanica, 2005, 40, 105-111.	0.9	0
279	Editors' Award, vegetation survey, remote sensing and restoration. Applied Vegetation Science, 2012, 15, 1-3.	1.9	0
280	Longâ€ŧerm investigations and experimental manipulations: Useful perspectives for applied vegetation studies. Applied Vegetation Science, 2018, 21, 1-2.	1.9	0
281	Vegetation science during hectic times. Journal of Vegetation Science, 2021, 32, e12965.	2.2	0
282	<i>Applied Vegetation Science</i> : Editorial 2021. Applied Vegetation Science, 2021, 24, e12540.	1.9	0