M Jake Vander Zanden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282196/publications.pdf

Version: 2024-02-01

150 papers 16,298 citations

²⁶⁶³⁰
56
h-index

123 g-index

151 all docs

151 docs citations

151 times ranked

12152 citing authors

#	Article	IF	CITATIONS
1	Applying Panarchy Theory to Aquatic Invasive Species Management: A Case Study on Invasive Rainbow Smelt <i>Osmerus mordax</i> . Reviews in Fisheries Science and Aquaculture, 2023, 31, 66-85.	9.1	8
2	Rise of a native apex predator and an invasive zooplankton cause successive ecological regime shifts in a North Temperate Lake. Limnology and Oceanography, 2022, 67, .	3.1	6
3	Early changes in the benthic community of a eutrophic lake following zebra mussel (<i>Dreissena) Tj ETQq$1\ 1\ 0.7$</i>	784314 rg 2.2	BT ₈ /Overlock
4	Application of eDNA as a tool for assessing fish population abundance. Environmental DNA, 2021, 3, 83-91.	5.8	62
5	Climate and food web effects on the spring clearâ€water phase in two northâ€temperate eutrophic lakes. Limnology and Oceanography, 2021, 66, 30-46.	3.1	17
6	Lake Food Webs. , 2021, , .		0
7	Hydroacoustic Surveys Underestimate Yellow Perch Population Abundance: The Importance of Considering Habitat Use. North American Journal of Fisheries Management, 2021, 41, 1079-1087.	1.0	8
8	Is That Minnow in Your Bait Bucket an Invasive Species? An Inquiry-Based Activity for Teaching Taxonomy in College-Level Courses. American Biology Teacher, 2021, 83, 240-246.	0.2	1
9	Resilience: insights from the U.S. LongTerm Ecological Research Network. Ecosphere, 2021, 12, e03434.	2.2	11
10	Environmental DNA metabarcoding as a tool for biodiversity assessment and monitoring: reconstructing established fish communities of northâ€ŧemperate lakes and rivers. Diversity and Distributions, 2021, 27, 1966-1980.	4.1	17
11	Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. BioScience, 2021, 71, 1011-1027.	4.9	42
12	Spatial and temporal patterns in native and invasive crayfishes during a 19â€year whole″ake invasive crayfish removal experiment. Freshwater Biology, 2021, 66, 2105-2117.	2.4	9
13	The Invasion Ecology of Sleeper Populations: Prevalence, Persistence, and Abrupt Shifts. BioScience, 2021, 71, 357-369.	4.9	63
14	Comparing models using air and water temperature to forecast an aquatic invasive species response to climate change. Ecosphere, 2020, 11, e03137.	2.2	6
15	Lake water level response to drought in a lake-rich region explained by lake and landscape characteristics. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1836-1845.	1.4	12
16	Prioritizing Management of Non-Native Eurasian Watermilfoil Using Species Occurrence and Abundance Predictions. Diversity, 2020, 12, 394.	1.7	1
17	Modeling a cross-ecosystem subsidy: forest songbird response to emergent aquatic insects. Landscape Ecology, 2020, 35, 1587-1604.	4.2	7
18	Fishing for Food: Quantifying Recreational Fisheries Harvest in Wisconsin Lakes. Fisheries, 2020, 45, 647-655.	0.8	18

#	Article	IF	Citations
19	Putting the lake back together 20 years later: what in the benthos have we learned about habitat linkages in lakes?. Inland Waters, 2020, 10, 305-321.	2.2	49
20	Is the cure worse than the disease? Comparing the ecological effects of an invasive aquatic plant and the herbicide treatments used to control it. Facets, 2020, 5, 353-366.	2.4	12
21	Scientific advances and adaptation strategies for Wisconsin lakes facing climate change. Lake and Reservoir Management, 2019, 35, 364-381.	1.3	22
22	Variation in Bluegill Catch Rates and Total Length Distributions among Four Sampling Gears Used in Two Wisconsin Lakes Dominated by Small Fish. North American Journal of Fisheries Management, 2019, 39, 714-724.	1.0	5
23	Production dynamics reveal hidden overharvest of inland recreational fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24676-24681.	7.1	65
24	Using eDNA, sediment subfossils, and zooplankton nets to detect invasive spiny water flea (Bythotrephes longimanus). Biological Invasions, 2019, 21, 377-389.	2.4	15
25	Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography, 2019, 64, 950-981.	3.1	75
26	Eroding productivity of walleye populations in northern Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 2291-2301.	1.4	53
27	Evaluating the "Gradual Entrainment Lake Inverter―(GELI) artificial mixing technology for lake and reservoir management. Lake and Reservoir Management, 2018, 34, 232-243.	1.3	1
28	Uncoupling indicators of water quality due to the invasive zooplankter, <i>Bythotrephes longimanus</i> . Limnology and Oceanography, 2018, 63, 1313-1327.	3.1	7
29	Historical niche partitioning and longâ€term trophic shifts in Laurentian Great Lakes deepwater coregonines. Ecosphere, 2018, 9, e02080.	2.2	21
30	Steve Carpenter Makes the Move to "Free-Range Scientist― Limnology and Oceanography Bulletin, 2018, 27, 23-24.	0.4	0
31	Long-term growth trends in northern Wisconsin walleye populations under changing biotic and abiotic conditions. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 733-745.	1.4	26
32	Detecting species at low densities: a new theoretical framework and an empirical test on an invasive zooplankton. Ecosphere, 2018, 9, e02475.	2.2	11
33	Go big or … don't? A field-based diet evaluation of freshwater piscivore and prey fish size relationships. PLoS ONE, 2018, 13, e0194092.	2.5	54
34	Comparing compound-specific and bulk stable nitrogen isotope trophic discrimination factors across multiple freshwater fish species and diets. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1291-1297.	1.4	40
35	A Framework for Evaluating Heterogeneity and Landscape-Level Impacts of Non-native Aquatic Species. Ecosystems, 2017, 20, 477-491.	3.4	29
36	The consistency of a species' response to press perturbations with high food web uncertainty. Ecology, 2017, 98, 1859-1868.	3.2	8

#	Article	IF	Citations
37	Whole″ake invasive crayfish removal and qualitative modeling reveal habitatâ€specific food web topology. Ecosphere, 2017, 8, e01647.	2.2	6
38	Grand challenges for research in the Laurentian Great Lakes. Limnology and Oceanography, 2017, 62, 2510-2523.	3.1	55
39	The effects of experimental whole-lake mixing on horizontal spatial patterns of fish and Zooplankton. Aquatic Sciences, 2017, 79, 543-556.	1.5	7
40	Defining a Safe Operating Space for inland recreational fisheries. Fish and Fisheries, 2017, 18, 1150-1160.	5.3	95
41	Invasive invertebrate predator, <i>Bythotrephes longimanus</i> , reverses trophic cascade in a northâ€temperate lake. Limnology and Oceanography, 2017, 62, 2498-2509.	3.1	29
42	Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers. Ecology, 2017, 98, 447-455.	3.2	30
43	Divergent life histories of invasive round gobies (<i>Neogobius melanostomus</i>) in Lake Michigan and its tributaries. Ecology of Freshwater Fish, 2017, 26, 563-574.	1.4	35
44	Littoralâ€benthic primary production estimates: Sensitivity to simplifications with respect to periphyton productivity and basin morphometry. Limnology and Oceanography: Methods, 2016, 14, 138-149.	2.0	29
45	Using maximum entropy to predict the potential distribution of an invasive freshwater snail. Freshwater Biology, 2016, 61, 457-471.	2.4	18
46	Food Web Theory and Ecological Restoration. , 2016, , 301-329.		13
47	Outbreak of an undetected invasive species triggered by a climate anomaly. Ecosphere, 2016, 7, e01628.	2.2	29
48	Spatial heterogeneity in invasive species impacts at the landscape scale. Ecosphere, 2016, 7, e01311.	2.2	26
49	Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4081-4085.	7.1	361
50	Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis. PLoS ONE, 2015, 10, e0116182.	2.5	412
51	Taking the trophic bypass: aquaticâ€ŧerrestrial linkage reduces methylmercury in a terrestrial food web. Ecological Applications, 2015, 25, 151-159.	3.8	29
52	Quantifying aquatic insect deposition from lake to land. Ecology, 2015, 96, 499-509.	3.2	68
53	Production rates of walleye and their relationship to exploitation in Escanaba Lake, Wisconsin, 1965–2009. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 834-844.	1.4	23
54	Predicting walleye recruitment as a tool for prioritizing management actions. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 661-672.	1.4	66

#	Article	IF	Citations
55	Experimental mixing of a north-temperate lake: testing the thermal limits of a cold-water invasive fish. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 926-937.	1.4	13
56	Representing calcification in distribution models for aquatic invasive species: surrogates perform as well as CaCO3 saturation state. Hydrobiologia, 2015, 746, 197-208.	2.0	7
57	A whole-lake experiment to control invasive rainbow smelt (Actinoperygii, Osmeridae) via overharvest and a food web manipulation. Hydrobiologia, 2015, 746, 433-444.	2.0	27
58	Non-indigenous fishes and their role in freshwater fish imperilment. , 2015, , 238-269.		10
59	Potential for largeâ€bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology, 2014, 95, 2257-2267.	3.2	28
60	Is there light after depth? Distribution of periphyton chlorophyll and productivity in lake littoral zones. Freshwater Science, 2014, 33, 524-536.	1.8	64
61	Experimental evidence that ecological effects of an invasive fish are reduced at high densities. Oecologia, 2014, 175, 325-334.	2.0	56
62	Benthic and planktonic primary production along a nutrient gradient in Green Bay, Lake Michigan, USA. Freshwater Science, 2014, 33, 487-498.	1.8	36
63	Subsidies to predators, apparent competition and the phylogenetic structure of prey communities. Oecologia, 2013, 173, 997-1007.	2.0	12
64	Depthâ€specific variation in carbon isotopes demonstrates resource partitioning among the littoral zoobenthos. Freshwater Biology, 2013, 58, 2389-2400.	2.4	16
65	Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter?. Ecology, 2013, 94, 2207-2219.	3.2	47
66	Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1109-1122.	1.4	75
67	Invasion success and impact of an invasive fish, round goby, in <scp>G</scp> reat <scp>L</scp> akes tributaries. Diversity and Distributions, 2013, 19, 184-198.	4.1	63
68	Change in a lake benthic community over a century: evidence for alternative community states. Hydrobiologia, 2013, 700, 287-300.	2.0	14
69	Regional-Level Inputs of Emergent Aquatic Insects from Water to Land. Ecosystems, 2013, 16, 1353-1363.	3.4	43
70	Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species. PLoS ONE, 2013, 8, e77415.	2.5	67
71	Effects of an invasive crayfish on trophic relationships in northâ€temperate lake food webs. Freshwater Biology, 2012, 57, 10-23.	2.4	47
72	Twenty years of invasion: a review of round goby <i>Neogobius melanostomus</i> biology, spread and ecological implications. Journal of Fish Biology, 2012, 80, 235-285.	1.6	407

#	Article	IF	Citations
73	Shorter Food Chain Length in Ancient Lakes: Evidence from a Global Synthesis. PLoS ONE, 2012, 7, e37856.	2.5	14
74	The effect of dreissenid invasions on chlorophyll and the chlorophyll : total phosphorus ratio in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 319-329.	1.4	42
75	Blowin' in the wind: reciprocal airborne carbon fluxes between lakes and land This paper is based on the J.C. Stevenson Memorial Lecture presented at the Canadian Conference for Fisheries Research (CCFFR) in Ottawa, Ontario, 9–11ÂJanuary 2009 Canadian Journal of Fisheries and Aquatic Sciences, 2011. 68. 170-182.	1.4	39
76	Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake ¹³ C addition. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 387-399.	1.4	122
77	Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 2011, 92, 1115-1125.	3.2	146
78	Borders of Biodiversity: Life at the Edge of the World's Large Lakes. BioScience, 2011, 61, 526-537.	4.9	182
79	Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus)., 2011, 21, 2587-2599.		41
80	Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. , 2011, 21, 888-896.		34
81	State of the World's Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annual Review of Environment and Resources, 2011, 36, 75-99.	13.4	705
82	Invasive species early detection and eradication: A response to Horns (2011). Journal of Great Lakes Research, 2011, 37, 595-596.	1.9	2
83	Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations. PLoS ONE, 2011, 6, e22906.	2.5	62
84	Invasive Species Research to Meet the Needs of Resource Management and Planning. Conservation Biology, 2011, 25, 867-872.	4.7	18
85	Comparing energetic and dynamic descriptions of a single food web linkage. Oikos, 2011, 120, 194-199.	2.7	3
86	Fish Reliance on Littoral–Benthic Resources and the Distribution of Primary Production in Lakes. Ecosystems, 2011, 14, 894-903.	3.4	108
87	Estimating benthic invertebrate production in lakes: a comparison of methods and scaling from individual taxa to the whole-lake level. Aquatic Sciences, 2011, 73, 153-169.	1.5	27
88	Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 2011, 92, 1115-1125.	3.2	37
89	What a difference a species makes: a meta–analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs, 2010, 80, 179-196.	5.4	422
90	Distribution and community-level effects of the Chinese mystery snail (Bellamya chinensis) in northern Wisconsin lakes. Biological Invasions, 2010, 12, 1591-1605.	2.4	45

#	Article	IF	CITATIONS
91	Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus) Tj ETQq1 3061-3069.	1 0.78431 2.4	l 4 rgBT /0\ 67
92	Stable isotope variation of a highly heterogeneous shallow freshwater system. Hydrobiologia, 2010, 646, 327-336.	2.0	32
93	Home range and seasonal movement of taimen, <i>Hucho taimen</i> , in Mongolia. Ecology of Freshwater Fish, 2010, 19, 545-554.	1.4	30
94	A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.	1.9	161
95	Forecasting the distribution of the invasive round goby (Neogobius melanostomus) in Wisconsin tributaries to Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 553-562.	1.4	56
96	A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.	1.9	6
97	Long-term food web change in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 2118-2129.	1.4	53
98	Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia, 2009, 159, 161-170.	2.0	138
99	Landscape Planning for Agricultural Nonpoint Source Pollution Reduction III: Assessing Phosphorus and Sediment Reduction Potential. Environmental Management, 2009, 43, 69-83.	2.7	62
100	Landscape Planning for Agricultural Non–Point Source Pollution Reduction. II. Balancing Watershed Size, Number of Watersheds, and Implementation Effort. Environmental Management, 2009, 43, 60-68.	2.7	27
101	The effects of impoundment and nonâ€native species on a river food web in Mexico's central plateau. River Research and Applications, 2009, 25, 1090-1108.	1.7	39
102	Behavioural and growth differences between experienced and na \tilde{A} -ve populations of a native crayfish in the presence of invasive rusty crayfish. Freshwater Biology, 2009, 54, 1876-1887.	2.4	19
103	Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology, 2009, 90, 2689-2699.	3.2	160
104	Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecological Applications, 2009, 19, 1127-1134.	3.8	76
105	Evaluating recreational fisheries for an endangered species: a case study of taimen, Hucho taimen, in Mongolia. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1707-1718.	1.4	54
106	Landscape Planning for Agricultural Nonpoint Source Pollution Reduction I: A Geographical Allocation Framework. Environmental Management, 2008, 42, 789-802.	2.7	55
107	Ecosystem Linkages Between Lakes and the Surrounding Terrestrial Landscape in Northeast Iceland. Ecosystems, 2008, 11, 764-774.	3.4	145
108	BENTHIC ALGAL PRODUCTION ACROSS LAKE SIZE GRADIENTS: INTERACTIONS AMONG MORPHOMETRY, NUTRIENTS, AND LIGHT. Ecology, 2008, 89, 2542-2552.	3.2	213

#	Article	IF	CITATIONS
109	Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment, 2008, 6, 357-363.	4.0	457
110	Long-term variation in isotopic baselines and implications for estimating consumer trophic niches. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2191-2200.	1.4	24
111	A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1512-1522.	1.4	273
112	MODELING SPAWNING DATES OFHUCHO TAIMENIN MONGOLIA TO ESTABLISH FISHERY MANAGEMENT ZONES. , 2007, 17, 2281-2289.		12
113	Impact of rainbow smelt (<i>Osmerus mordax</i>) invasion on walleye (<i>Sander vitreus</i>) recruitment in Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1543-1550.	1.4	36
114	Understanding Regional Change: A Comparison of Two Lake Districts. BioScience, 2007, 57, 323-335.	4.9	129
115	QUANTITATIVE APPROACHES TO THE ANALYSIS OF STABLE ISOTOPE FOOD WEB DATA. Ecology, 2007, 88, 2793-2802.	3.2	121
116	Global patterns of aquatic food chain length. Oikos, 2007, 116, 1378-1388.	2.7	212
117	Long distance migration and marine habitation in the tropical Asian catfish, <i>Pangasius krempfi</i> Journal of Fish Biology, 2007, 71, 818-832.	1.6	52
118	Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. Global Ecology and Biogeography, 2007, 16, 694-701.	5.8	311
119	Intensive trapping and increased fish predation cause massive population decline of an invasive crayfish. Freshwater Biology, 2007, 52, 1134-1146.	2.4	112
120	Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 383-393.	1.4	93
121	Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2608-2620.	1.4	127
122	Implications of long-term dynamics of fish and zooplankton communities for among-lake comparisons. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1812-1821.	1.4	21
123	Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 1.4	/Qyerlock 1
124	Forecasting the Spread of Invasive Rainbow Smelt in the Laurentian Great Lakes Region of North America. Conservation Biology, 2006, 20, 1740-1749.	4.7	51
125	Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology, 2006, 51, 224-235.	2.4	146
126	The rapid spread of rusty crayfish (Orconectes rusticus) with observations on native crayfish declines in Wisconsin (U.S.A.) over the past 130Âyears. Biological Invasions, 2006, 8, 1621-1628.	2.4	121

#	Article	IF	Citations
127	Long-term changes in the fish assemblage of the Laja River, Guanajuato, central Mexico. Aquatic Conservation: Marine and Freshwater Ecosystems, 2006, 16, 533-546.	2.0	30
128	Effects of Multi-chain Omnivory on the Strength of Trophic Control in Lakes. Ecosystems, 2005, 8, 682-693.	3.4	76
129	The success of animal invaders. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7055-7056.	7.1	32
130	The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography, 2005, 50, 1368-1376.	3.1	62
131	Do Reservoirs Facilitate Invasions into Landscapes?. BioScience, 2005, 55, 518.	4.9	281
132	Is pelagic top-down control in lakes augmented by benthic energy pathways?. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1422-1431.	1.4	61
133	Primary Consumer Stable Nitrogen Isotopes as Indicators of Nutrient Source. Environmental Science & En	10.0	139
134	PREDICTING OCCURRENCES AND IMPACTS OF SMALLMOUTH BASS INTRODUCTIONS IN NORTH TEMPERATE LAKES. , 2004, 14, 132-148.		126
135	Historical Food Web Structure and Restoration of Native Aquatic Communities in the Lake Tahoe (California–Nevada) Basin. Ecosystems, 2003, 6, 274-288.	3.4	174
136	From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 2003, 48, 1408-1418.	3.1	513
137	Fishes as Integrators of Benthic and Pelagic Food Webs in Lakes. Ecology, 2002, 83, 2152.	3.2	50
138	A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Canadian Journal of Zoology, 2002, 80, 381-387.	1.0	227
139	FISHES AS INTEGRATORS OF BENTHIC AND PELAGIC FOOD WEBS IN LAKES. Ecology, 2002, 83, 2152-2161.	3.2	548
140	Putting the Lake Back Together: Reintegrating Benthic Pathways into Lake Food Web Models. BioScience, 2002, 52, 44.	4.9	466
141	Variation in \hat{l} (sup>15N and \hat{l} (sup>13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography, 2001, 46, 2061-2066.	3.1	1,506
142	Within- and among-population variation in the trophic position of a pelagic predator, lake trout (<i>Salvelinus namaycush</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 725-731.	1.4	129
143	Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 1999, 401, 464-467.	27.8	729
144	PRIMARY CONSUMER Î $<$ sup $>$ 13 $<$ sup $>$ C AND Î $<$ sup $>$ 15 $<$ sup $>$ N AND THE TROPHIC POSITION OF AQUATIC CONSUMERS. Ecology, 1999, 80, 1395-1404.	3.2	903

#	Article	IF	CITATIONS
145	Patterns of Food Chain Length in Lakes: A Stable Isotope Study. American Naturalist, 1999, 154, 406-416.	2.1	276
146	PRIMARY CONSUMER δ13C AND δ15N AND THE TROPHIC POSITION OF AQUATIC CONSUMERS. , 1999, 80, 139	5.	4
147	Application of Stable Isotope Techniques to Trophic Studies of Age-0 Smallmouth Bass. Transactions of the American Fisheries Society, 1998, 127, 729-739.	1.4	143
148	Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios ($\hat{l} < \sup 15 < \sup N$) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1142-1158.	1.4	573
149	A Trophic Position Model of Pelagic Food Webs: Impact on Contaminant Bioaccumulation in Lake Trout. Ecological Monographs, 1996, 66, 451-477.	5.4	300
150	Resisting ecosystem transformation through an intensive whole″ake fish removal experiment. Fisheries Management and Ecology, 0, , .	2.0	11