M Jake Vander Zanden

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6282196/publications.pdf
Version: 2024-02-01

$1 \begin{aligned} & \text { Applying Panarchy Theory to Aquatic Invasive Species Management：A Case Study on Invasive Rainbow } \\ & \text { Smelt＜i＞Osmerus mordax＜／i＞．Reviews in Fisheries Science and Aquaculture，2023，31，66－85．}\end{aligned}$

Rise of a native apex predator and an invasive zooplankton cause successive ecological regime shifts in a North Temperate Lake．Limnology and Oceanography，2022，67，．

Early changes in the benthic community of a eutrophic lake following zebra mussel（＜i＞Dreissena）Tj ETQq1 10.7843 .14 rgBT／Overlod

Application of eDNA as a tool for assessing fish population abundance．Environmental DNA，2021，3，
5.8

83－91．

Climate and food web effects on the spring clearâ€water phase in two northâ€temperate eutrophic lakes．
Climate and food web effects on the spring clear
Limnology and Oceanography，2021，66，30－46．
$3.1 \quad 17$

6 Lake Food Webs．，2021，，．

Environmental DNA metabarcoding as a tool for biodiversity assessment and monitoring：
10 reconstructing established fish communities of northâ€temperate lakes and rivers．Diversity and
4.1

Distributions，2021，27，1966－1980．
Blue Waters，Green Bottoms：Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes
Worldwide．BioScience，2021，71，1011－1027．

Spatial and temporal patterns in native and invasive crayfishes during a 19â€year wholeâ€łake invasive crayfish removal experiment．Freshwater Biology，2021，66，2105－2117．
2.4

9

The Invasion Ecology of Sleeper Populations：Prevalence，Persistence，and Abrupt Shifts．BioScience，
2021，71，357－369．
4.9

63

Comparing models using air and water temperature to forecast an aquatic invasive species response to climate change．Ecosphere，2020，11，e03137．
2.2

6

Lake water level response to drought in a lake－rich region explained by lake and landscape
characteristics．Canadian Journal of Fisheries and Aquatic Sciences，2020，77，1836－1845．
$1.4 \quad 12$

Prioritizing Management of Non－Native Eurasian Watermilfoil Using Species Occurrence and
Abundance Predictions．Diversity，2020，12， 394.

Modeling a cross－ecosystem subsidy：forest songbird response to emergent aquatic insects．Landscape
4.2

Ecology，2020，35，1587－1604．

Fishing for Food：Quantifying Recreational Fisheries Harvest in Wisconsin Lakes．Fisheries，2020，45，
647－655．
19
20

> Putting the lake back together 20 years later: what in the benthos have we learned about habitat linkages in lakes?. Inland Waters, 2020, 10, 305-321.
2.2

49

Is the cure worse than the disease? Comparing the ecological effects of an invasive aquatic plant and the herbicide treatments used to control it. Facets, 2020, 5, 353-366.
2.4

12
Scientific advances and adaptation strategies for Wisconsin lakes facing climate change. Lake and
Reservoir Management, 2019, 35, 364-381. $\begin{aligned} & \text { Variation in Bluegill Catch Rates and Total Length Distributions among Four Sampling Gears Used in } \\ & 22 \text { Two Wisconsin Lakes Dominated by Small Fish. North American Journal of Fisheries Management, } 20\end{aligned}$ 39, 714-724.

23	Production dynamics reveal hidden overharvest of inland recreational fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24676-24681.	7.1	65
24	Using eDNA, sediment subfossils, and zooplankton nets to detect invasive spiny water flea (Bythotrephes longimanus). Biological Invasions, 2019, 21, 377-389.	2.4	15
25	Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography, 2019, 64, 950-981.	3.1	75
26	Eroding productivity of walleye populations in northern Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 2291-2301.	1.4	53
27	Evaluating the â€œGradual Entrainment Lake Inverterâ€•(GELI) artificial mixing technology for lake and reservoir management. Lake and Reservoir Management, 2018, 34, 232-243.	1.3	1
28	Uncoupling indicators of water quality due to the invasive zooplankter, 〈i>Bythotrephes longimanus</i>. Limnology and Oceanography, 2018, 63, 1313-1327.	3.1	7
29	Historical niche partitioning and longâ€term trophic shifts in Laurentian Great Lakes deepwater coregonines. Ecosphere, 2018, 9, e02080.	2.2	21

30 Steve Carpenter Makes the Move to â€œFree-Range Scientistâ€: Limnology and Oceanography Bulletin, 2018,
$27,23-24$.
$0.4 \quad 0$
27, 23-24.
1.426

Long-term growth trends in northern Wisconsin walleye populations under changing biotic and
abiotic conditions. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 733-745.

Detecting species at low densities: a new theoretical framework and an empirical test on an invasive zooplankton. Ecosphere, 2018, 9, e02475.
2.2

11
2.5

54
33 Go big or â€ don't? A field-based diet evaluation of freshwater piscivore and prey fish size relationships. PLoS ONE, 2018, 13, e0194092.

Comparing compound-specific and bulk stable nitrogen isotope trophic discrimination factors across
34 multiple freshwater fish species and diets. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74,
1.4

40
1291-1297.
A Framework for Evaluating Heterogeneity and Landscape-Level Impacts of Non-native Aquatic Species.
Ecosystems, 2017, 20, 477-491.
3.4

29

The consistency of a speciesấ ${ }^{\mathrm{TM}}$ response to press perturbations with high food web uncertainty.

37	Wholeâ€lake invasive crayfish removal and qualitative modeling reveal habitatâ€specific food web topology. Ecosphere, 2017, 8, e01647.	2.2	6
38	Grand challenges for research in the Laurentian Great Lakes. Limnology and Oceanography, 2017, 62, 2510-2523.	3.1	55
39	The effects of experimental whole-lake mixing on horizontal spatial patterns of fish and Zooplankton. Aquatic Sciences, 2017, 79, 543-556.	1.5	7
40	Defining a Safe Operating Space for inland recreational fisheries. Fish and Fisheries, 2017, 18, 1150-1160.	5.3	95
41	Invasive invertebrate predator, <i> Bythotrephes longimanus</i>, reverses trophic cascade in a northâ€temperate lake. Limnology and Oceanography, 2017, 62, 2498-2509.	3.1	29
42	Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers. Ecology, 2017, 98, 447-455.	3.2	30
43	Divergent life histories of invasive round gobies (<i>Neogobius melanostomus</i>) in Lake Michigan and its tributaries. Ecology of Freshwater Fish, 2017, 26, 563-574.	1.4	35
44	Littoralâ€benthic primary production estimates: Sensitivity to simplifications with respect to periphyton productivity and basin morphometry. Limnology and Oceanography: Methods, 2016, 14, 138-149.	2.0	29
45	Using maximum entropy to predict the potential distribution of an invasive freshwater snail. Freshwater Biology, 2016, 61, 457-471.	2.4	18

46 Food Web Theory and Ecological Restoration. , 2016, , 301-329. 13
47 Outbreak of an undetected invasive species triggered by a climate anomaly. Ecosphere, 2016, 7, e01628. 2.2 29
48 Spatial heterogeneity in invasive species impacts at the landscape scale. Ecosphere, 2016, 7, e01311.2.226Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceed
of the National Academy of Sciences of the United States of America, 2016, 113, 4081-4085.7.1
29

Representing calcification in distribution models for aquatic invasive species: surrogates perform as
56 well as CaCO3 saturation state. Hydrobiologia, 2015, 746, 197-208.
2.0 and a food web manipulation. Hydrobiologia, 2015, 746, 433-444.

27
$57 \quad$ A whole-lake experiment to control invasive rainbow smelt (Actinoperygii, Osmeridae) via overharvest

58 Non-indigenous fishes and their role in freshwater fish imperilment. , 2015, , 238-269.

59	Potential for largeâ€bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology, 2014, 95, 2257-2267.	3.2	28
60	Is there light after depth? Distribution of periphyton chlorophyll and productivity in lake littoral zones. Freshwater Science, 2014, 33, 524-536.	1.8	64
61	Experimental evidence that ecological effects of an invasive fish are reduced at high densities. Oecologia, 2014, 175, 325-334.	2.0	56
62	Benthic and planktonic primary production along a nutrient gradient in Green Bay, Lake Michigan, USA. Freshwater Science, 2014, 33, 487-498.	1.8	36
63	Subsidies to predators, apparent competition and the phylogenetic structure of prey communities. Oecologia, 2013, 173, 997-1007.	2.0	12
64	Depthâ€specific variation in carbon isotopes demonstrates resource partitioning among the littoral zoobenthos. Freshwater Biology, 2013, 58, 2389-2400.	2.4	16
65	Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter?. Ecology, 2013, 94, 2207-2219.	3.2	47
66	Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1109-1122.	1.4	75
67	Invasion success and impact of an invasive fish, round goby, in <scp>G</scp> reat <scp>L</scp>akes tributaries. Diversity and Distributions, 2013, 19, 184-198.	4.1	63

Change in a lake benthic community over a century: evidence for alternative community states.
Hydrobiologia, 2013, 700, 287-300.
69 Regional-Level Inputs of Emergent Aquatic Insects from Water to Land. Ecosystems, 2013, 16, 1353-1363.

3.4

43

70 Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic

73 Shorter Food Chain Length in Ancient Lakes: Evidence from a Global Synthesis. PLoS ONE, 2012, 7, e37856.

The effect of dreissenid invasions on chlorophyll and the chlorophyllâ€\%:â€\%ototal phosphorus ratio in
1.4

42 north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 319-329.

Blowinâ $€^{T M}$ in the wind: reciprocal airborne carbon fluxes between lakes and land This paper is based on
75 the J.C. Stevenson Memorial Lecture presented at the Canadian Conference for Fisheries Research
1.4 2011. 68, 170-182.

Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a
76 whole-lake ¹³C addition. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68,
1.4

122 387-399.

77 Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing
$3.2 \quad 146$ model. Ecology, 2011, 92, 1115-1125.

78 Borders of Biodiversity: Life at the Edge of the World's Large Lakes. BioScience, 2011, 61, 526-537.
4.9

80 Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. , 2011, 21, 888-896.

34

81	State of the World's Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annual Review of Environment and Resources, 2011, 36, 75-99.	13.4
82	Invasive species early detection and eradication: A response to Horns (2011). Journal of Great Lakes Research, 2011, 37, 595-596.	1.9

83 Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population
Extirpations. PLoS ONE, 2011 , 6, e22906.
$2.5 \quad 62$

84 Invasive Species Research to Meet the Needs of Resource Management and Planning. Conservation Biology, 2011, 25, 867-872.
4.7

18

85 Comparing energetic and dynamic descriptions of a single food web linkage. Oikos, 2011, 120, 194-199.
$2.7 \quad 3$

Fish Reliance on Littoralâe"Benthic Resources and the Distribution of Primary Production in Lakes.
3.4

108 Ecosystems, 2011, 14, 894-903.

Estimating benthic invertebrate production in lakes: a comparison of methods and scaling from
individual taxa to the whole-lake level. Aquatic Sciences, 2011, 73, 153-169.
1.5

27

Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing

92 Stable isotope variation of a highly heterogeneous shallow freshwater system. Hydrobiologia, 2010, 646, 327-336.

3
94 A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the
1.9

161 Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.

Forecasting the distribution of the invasive round goby (Neogobius melanostomus) in Wisconsin
tributaries to Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 553-562.
1.4

A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.
1.9

6

Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia, 2009, 159, 161-170.experimental aquatic system. Oecologia, 2009, 159, 161-170.
99 Landscape Planning for Agricultural Nonpoint Source Pollution Reduction III: Assessing Phosphorusand Sediment Reduction Potential. Environmental Management, 2009, 43, 69-83.
101 The effects of impoundment and nonâ€native species on a river food web in Mexico's central plateau. River Research and Applications, 2009, 25, 1090-1108.
1.7 39
102 Behavioural and growth differences between experienced and na $\tilde{A}^{-} v e$ populations of a native crayfish in the presence of invasive rusty crayfish. Freshwater Biology, 2009, 54, 1876-1887.2.419

Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology, 2009,
3.2

Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecological 3.8 76

Long-term variation in isotopic baselines and implications for estimating consumer trophic niches.
A management framework for preventing the secondary spread of aquatic invasive species. Canadian
Journal of Fisheries and Aquatic Sciences, $2008,65,1512-1522$.
112 MODELING SPAWNING DATES OFHUCHO TAIMENIN MONGOLIA TO ESTABLISH FISHERY MANAGEMENT
ZONES. , 2007, 17, 2281-2289.
1.4

273

ZONES. , 2007, 17, 2281-2289.

113 Impact of rainbow smelt ($\langle i\rangle$ Osmerus mordax</i>) invasion on walleye ($\langle i\rangle$ Sander vitreus </i>)
recruitment in Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1543-1550.
1.4

36

114 Understanding Regional Change: A Comparison of Two Lake Districts. BioScience, 2007, 57, 323-335.
4.9

129

QUANTITATIVE APPROACHES TO THE ANALYSIS OF STABLE ISOTOPE FOOD WEB DATA. Ecology, 2007, 88, 2793-2802.

Global patterns of aquatic food chain length. Oikos, 2007, 116, 1378-1388.

Long distance migration and marine habitation in the tropical Asian catfish, <i>Pangasius krempfi</i>.
Journal of Fish Biology, 2007, 71, 818-832.

Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. Global Ecology and Biogeography, 2007, 16, 694-701.

Intensive trapping and increased fish predation cause massive population decline of an invasive
crayfish. Freshwater Biology, 2007, 52, 1134-1146.

Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 383-393.

Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2608-2620.

Implications of long-term dynamics of fish and zooplankton communities for among-lake comparisons. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1812-1821.

Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes) Tj ETQq1 10.784314 rgBT /Oyerlock

Forecasting the Spread of Invasive Rainbow Smelt in the Laurentian Great Lakes Region of North America. Conservation Biology, 2006, 20, 1740-1749.

Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on
zoobenthic communities. Freshwater Biology, 2006, 51, 224-235.
2.4

146

The rapid spread of rusty crayfish (Orconectes rusticus) with observations on native crayfish declines in Wisconsin (U.S.A.) over the past 130Âyears. Biological Invasions, 2006, 8, 1621-1628.
Primary Consumer Stable Nitrogen Isotopes as Indicators of Nutrient Source. Environmental Science
\& Technology, 2005, 39, 7509-7515.

134	PREDICTING OCCURRENCES AND IMPACTS OF SMALLMOUTH BASS INTRODUCTIONS IN NORTH
LAKES. , 2004, 14, 132-148.	

139 FISHES AS INTEGRATORS OF BENTHIC AND PELACIC FOOD WEBS IN LAKES. Ecology, 2002, 83, 2152-2161. 3.2

140 Putting the Lake Back Together: Reintegrating Benthic Pathways into Lake Food Web Models.

Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios
148 (1 ^{15$}N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences, 1997,

