M Jake Vander Zanden

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6282196/publications.pdf
Version: 2024-02-01

Variation in \hat{I}^{\prime} <sup > 15 </sup $>N$ and $\hat{l}^{\prime}<$ sup $>13</$ sup $>C$ trophic fractionation: Implications for aquatic food 3.1 1,506 web studies. Limnology and Oceanography, 2001, 46, 2061-2066.

What a difference a species makes: a metaâ€"analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs, 2010, 80, 179-196.

> Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis. PLoS ONE, 2015, 10,
e0116182.
$2.5 \quad 412$

Twenty years of invasion: a review of round goby <i> Neogobius melanostomus</i> biology, spread and
1.6 ecological implications. Journal of Fish Biology, 2012, 80, 235-285.

$13 \quad$| Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings |
| :--- |
| of the National Academy of Sciences of the United States of America, 2016, 113, 4081-4085. |

Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and

23	Historical Food Web Structure and Restoration of Native Aquatic Communities in the Lake Tahoe (Californiaâ€"Nevada) Basin. Ecosystems, 2003, 6, 274-288.	3.4	174
24	A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.	1.9	161
25	Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology, 2009, 90, 2689-2699.	3.2	160

26 Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish onzoobenthic communities. Freshwater Biology, 2006, 51, 224-235.
Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing
model. Ecology, 2011, 92, 1115-1125.

$28 \quad$| Ecosystem Linkages Between Lakes and the Surrounding Terrestrial Landscape in Northeast Iceland. |
| :--- |
| Ecosystems, 2008, 11, 764-774. |

Intensive trapping and increased fish predation cause massive population decline of an invasive
crayfish. Freshwater Biology, 2007,52,1134-1146.

Fish Reliance on Littoralâ $€^{\prime \prime}$ Benthic Resources and the Distribution of Primary Production in Lakes.
Ecosystems, 2011, 14, 894-903.
3.4108

Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 383-393.
1.4
43 Effects of Multi-chain Omnivory on the Strength of Trophic Control in Lakes. Ecosystems, 2005, 8,

682-693. | Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecologica |
| :--- |
| Applications, 2009, 19, 1127-1134. | Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and

Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography, 2019, 64, 950-981.
3.1

75

47 Quantifying aquatic insect deposition from lake to land. Ecology, 2015, 96, 499-509.
3.2

68

Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus) Tj ETQq0 00 rgBT /Overlock 10

55	The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography, 2005, 50, 1368-1376.	3.1	62
56	Landscape Planning for Agricultural Nonpoint Source Pollution Reduction III: Assessing Phosphorus and Sediment Reduction Potential. Environmental Management, 2009, 43, 69-83.	2.7	62
57	Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations. PLoS ONE, 2011, 6, e22906.	2.5	62

58 Application of eDNA as a tool for assessing fish population abundance. Environmental DNA, 2021, 3,
Is pelagic top-down control in lakes augmented by benthic energy pathways?. Canadian Journal of
Fisheries and Aquatic Sciences, 2005, 62, 1422-1431.

Forecasting the distribution of the invasive round goby (Neogobius melanostomus) in Wisconsin tributaries to Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 553-562.
1.4

56
Experimental evidence that ecological effects of an invasive fish are reduced at high densities.
Oecologia, 2014, 175, 325-334.

$62 \quad$| Landscape Planning for Agricultural Nonpoint Source Pollution Reduction I: A Geographical |
| :--- |
| Allocation Framework. Environmental Management, 2008, 42, 789-802. |

$63 \quad$| Grand challenges for research in the Laurentian Great Lakes. Limnology and Oceanography, 2017, 62, |
| :--- |
| $2510-2523$. |

Evaluating recreational fisheries for an endangered species: a case study of taimen, Hucho taimen, in Mongolia. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1707-1718.

$65 \quad$| Go big or â€ |
| :--- |
| relationships. PLoS ONE, 2018, 13, e0194092. |

Long-term food web change in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 2118-2129.

Eroding productivity of walleye populations in northern Wisconsin lakes. Canadian Journal of
1.4

53
67 Eroding productivity of walleye populations in northern

Long distance migration and marine habitation in the tropical Asian catfish, <i>Pangasius krempfi</i>.
68 Long distance migration and marine habitation Journal of Fish Biology, 2007, 71, 818-832.
1.6

52

Forecasting the Spread of Invasive Rainbow Smelt in the Laurentian Great Lakes Region of North
America. Conservation Biology, 2006, 20, 1740-1749.
4.7

51

70 Fishes as Integrators of Benthic and Pelagic Food Webs in Lakes. Ecology, 2002, 83, 2152.
3.2

50

71 Putting the lake back together 20 years later: what in the benthos have we learned about habitat
linkages in lakes?. Inland Waters, 2020, 10, 305-321.
2.2

49

Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes) $\mathrm{Tj}_{\mathrm{j}} \mathrm{ETQqO} 00 \mathrm{rgBT} \mathrm{I}_{1.4} \mathrm{Verlock}_{47} 10 \mathrm{Tf} 506$
Effects of an invasive crayfish on trophic relationships in northâ€temperate lake food webs. Freshwater
Biology, 2012, 57, 10-23.

$74 \quad$| Are rapid transitions between invasive and native species caused by alternative stable states, and does |
| :--- |
| it matter?. Ecology, 2013, 94, 2207-2219. |

$75 \quad$| Distribution and community-level effects of the Chinese mystery snail (Bellamya chinensis) in |
| :--- |
| northern Wisconsin lakes. Biological Invasions, 2010, 12, 1591-1605. |

76 Regional-Level Inputs of Emergent Aquatic Insects from Water to Land. Ecosystems, 2013, 16, 1353-1363.
$3.4 \quad 43$
The effect of dreissenid invasions on chlorophyll and the chlorophyllâ€\%:â€\%ototal phosphorus ratio in
north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 319-329.
$1.4 \quad 42$

78 Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes
Worldwide. BioScience, 2021, 71, 1011-1027.
4.9

79 Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). , 2011, 21, 2587-2599.

Comparing compound-specific and bulk stable nitrogen isotope trophic discrimination factors across
80 multiple freshwater fish species and diets. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74,
1.4 1291-1297.

81 The effects of impoundment and nonâ€native species on a river food web in Mexico's central plateau.
81 River Research and Applications, 2009, 25, 1090-1108.
Blowinâ T^{TM} in the wind: reciprocal airborne carbon fluxes between lakes and land This paper is based on
82 the J.C. Stevenson Memorial Lecture presented at the Canadian Conference for Fisheries Research 2011, 68, 170-182.
Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing
model. Ecology, 2011, 92, 1115-1125.
$84 \begin{aligned} & \text { Impact of rainbow smelt (<i>Osmerus mordax</i>) invasion on walleye (<i>Sander vitreus</i>) } \\ & \text { recruitment in Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1543-1550. }\end{aligned} 1.4$
85 Benthic and planktonic primary production along a nutrient gradient in Green Bay, Lake Michigan, USA.
Freshwater Science, 2014, 33, 487-498.

Divergent life histories of invasive round gobies (<i>Neogobius melanostomus</i>) in Lake Michigan and its tributaries. Ecology of Freshwater Fish, 2017, 26, 563-574.
1.4

35

[^0]The success of animal invaders. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7055-7056.
7.1

32

Stable isotope variation of a highly heterogeneous shallow freshwater system. Hydrobiologia, 2010,
646, 327-336.
2.0

32

Home range and seasonal movement of taimen, <i>Hucho taimen</i>, in Mongolia. Ecology of
Freshwater Fish, 2010, 19, 545-554.

Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers. Ecology, 2017, 98, 447-455.
3.2

Taking the trophic bypass: aquaticâ€terrestrial linkage reduces methylmercury in a terrestrial food web.
Ecological Applications, 2015, 25, 151-159.

Littoralâ€benthic primary production estimates: Sensitivity to simplifications with respect to
94 periphyton productivity and basin morphometry. Limnology and Oceanography: Methods, 2016, 14, 138-149.

95 Outbreak of an undetected invasive species triggered by a climate anomaly. Ecosphere, 2016, 7, e01628.
2.2

A Framework for Evaluating Heterogeneity and Landscape-Level Impacts of Non-native Aquatic Species.
Ecosystems, 2017, 20, 477-491.

Invasive invertebrate predator, <i> Bythotrephes longimanus</i>, reverses trophic cascade in a
northâ€temperate lake. Limnology and Oceanography, 2017, 62, 2498-2509.
3.1

29

Potential for largeâ€bodied zooplankton and dreissenids to alter the productivity and autotrophic
structure of lakes. Ecology, 2014, 95, 2257-2267.

Landscape Planning for Agricultural Nonâ€"Point Source Pollution Reduction. II. Balancing Watershed
Size, Number of Watersheds, and Implementation Effort. Environmental Management, 2009, 43, 60-68.

Estimating benthic invertebrate production in lakes: a comparison of methods and scaling from
individual taxa to the whole-lake level. Aquatic Sciences, 2011, 73, 153-169.

101 A whole-lake experiment to control invasive rainbow smelt (Actinoperygii, Osmeridae) via overharvest
and a food web manipulation. Hydrobiologia, 2015, 746, 433-444.

102 Spatial heterogeneity in invasive species impacts at the landscape scale. Ecosphere, 2016, 7, e01311.
2.2

26

103 Long-term growth trends in northern Wisconsin walleye populations under changing biotic and
abiotic conditions. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 733-745.

Long-term variation in isotopic baselines and implications for estimating consumer trophic niches.
Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2191-2200.

Production rates of walleye and their relationship to exploitation in Escanaba Lake, Wisconsin,
$1965 a ̂ €$ "2009. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 834-844.

Scientific advances and adaptation strategies for Wisconsin lakes facing climate change. Lake and
Reservoir Management, 2019, 35, 364-381.

Implications of long-term dynamics of fish and zooplankton communities for among-lake comparisons. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1812-1821.
1.4

21113 Limate and food web effects on the spring clearâ€water phase in two northâ€temperate eutrophic lakes.$3.1 \quad 17$Limnology and Oceanography, 2021, 66, 30-46.
Environmental DNA metabarcoding as a tool for biodiversity assessment and monitoring:
114 reconstructing established fish communities of northâ€temperate lakes and rivers. Diversity and 4.1 17 Distributions, 2021, 27, 1966-1980.
115 Depthâ€specific variation in carbon isotopes demonstrates resource partitioning among the littoral zoobenthos. Freshwater Biology, 2013, 58, 2389-2400. $2.4 \quad 16$
116 Using eDNA, sediment subfossils, and zooplankton nets to detect invasive spiny water flea2.4
117 Change in a lake benthic community over a century: evidence for alternative community states.
Hydrobiologia, 2013, 700, 287-300.2.014
Shorter Food Chain Length in Ancient Lakes: Evidence from a Clobal Synthesis. PLoS ONE, 2012, 7,e37856.
119 Experimental mixing of a north-temperate lake: testing the thermal limits of a cold-water invasive fish. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 926-937.
Spatial and temporal patterns in native and invasive crayfishes during a 19â€year wholeâ€lake invasive

crayfish removal experiment. Freshwater Biology, 2021, 66, 2105-2117. \quad| 9.4 |
| :---: |

Early changes in the benthic community of a eutrophic lake following zebra mussel (<i>Dreissena) Tj ETQqO 00 rgBT. ${ }_{2}$ Overlock 10 Tf 50

133	Applying Panarchy Theory to Aquatic Invasive Species Management: A Case Study on Invasive Rainbow Smelt 〈i> Osmerus mordax</i>. Reviews in Fisheries Science and Aquaculture, 2023, 31, 66-85.	9.1	8
134	Representing calcification in distribution models for aquatic invasive species: surrogates perform as well as CaCO3 saturation state. Hydrobiologia, 2015, 746, 197-208.	2.0	7
135	The effects of experimental whole-lake mixing on horizontal spatial patterns of fish and Zooplankton. Aquatic Sciences, 2017, 79, 543-556.	1.5	7
136	Uncoupling indicators of water quality due to the invasive zooplankter, 〈i>Bythotrephes longimanus</i>. Limnology and Oceanography, 2018, 63, 1313-1327.	3.1	7
137	Modeling a cross-ecosystem subsidy: forest songbird response to emergent aquatic insects. Landscape Ecology, 2020, 35, 1587-1604.	4.2	7
138	Wholeâ€lake invasive crayfish removal and qualitative modeling reveal habitatâ€specific food web topology. Ecosphere, 2017, 8, e01647.	2.2	6
139	Comparing models using air and water temperature to forecast an aquatic invasive species response to climate change. Ecosphere, 2020, 11, e03137.	2.2	6

140 A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 2010, 36, 199-205.
1.9

6

141	Rise of a native apex predator and an invasive zooplankton cause successive ecological regime shifts in a North Temperate Lake. Limnology and Oceanography, 2022, 67, .	3.1
142	Variation in Bluegill Catch Rates and Total Length Distributions among Four Sampling Gears Used in Two Wisconsin Lakes Dominated by Small Fish. North American Journal of Fisheries Management, 2019, 39, 714-724.	1.0

143 PRIMARY CONSUMER Î'13C AND Î'15N AND THE TROPHIC POSITION OF AQUATIC CONSUMERS. , 1999, 80, 1395.

Evaluating the â€œGradual Entrainment Lake Inverterâ€•(GELI) artificial mixing technology for lake and

[^0]: Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. ,
 $2011,21,888-896$.

