
Lyanne C Schlichter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Microglia-Mediated Neurotoxicity in a New Model of the Stroke Penumbra. Journal of Neuroscience, 2008, 28, 2221-2230.	3.6	302
2	Microglia Responses to Pro-inflammatory Stimuli (LPS, IFNγ+TNFα) and Reprogramming by Resolving Cytokines (IL-4, IL-10). Frontiers in Cellular Neuroscience, 2018, 12, 215.	3.7	242
3	The Ca2+-Activated K+ Channel KCNN4/KCa3.1 Contributes to Microglia Activation and Nitric Oxide-Dependent Neurodegeneration. Journal of Neuroscience, 2007, 27, 234-244.	3.6	208
4	hSK4/hIK1, a Calmodulin-binding KCa Channel in Human T Lymphocytes. Journal of Biological Chemistry, 1999, 274, 14838-14849.	3.4	202
5	Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons. Journal of Neuroscience, 2005, 25, 7139-7149.	3.6	198
6	K ⁺ channels and the microglial respiratory burst. American Journal of Physiology - Cell Physiology, 2001, 280, C796-C806.	4.6	182
7	Neutrophil Depletion Reduces Blood-Brain Barrier Breakdown, Axon Injury, and Inflammation After Intracerebral Hemorrhage. Journal of Neuropathology and Experimental Neurology, 2011, 70, 218-235.	1.7	178
8	Functional Up-regulation of HERG K+ Channels in Neoplastic Hematopoietic Cells. Journal of Biological Chemistry, 2002, 277, 18528-18534.	3.4	169
9	A Kv1.5 to Kv1.3 Switch in Endogenous Hippocampal Microglia and a Role in Proliferation. Journal of Neuroscience, 1999, 19, 10680-10693.	3.6	158
10	The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. Journal of Neuroinflammation, 2013, 10, 75.	7.2	158
11	Regulation of a TRPM7-like Current in Rat Brain Microglia. Journal of Biological Chemistry, 2003, 278, 42867-42876.	3.4	143
12	Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Research, 2007, 1180, 140-154.	2.2	137
13	Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Experimental Neurology, 2007, 207, 227-237.	4.1	131
14	The Ca2+release-activated Ca2+current (ICRAC) mediates store-operated Ca2+entry in rat microglia. Channels, 2009, 3, 129-139.	2.8	106
15	Regulation of podosome formation, microglial migration and invasion by Ca2+-signaling molecules expressed in podosomes. Journal of Neuroinflammation, 2012, 9, 250.	7.2	104
16	Calmodulin Regulates Assembly and Trafficking of SK4/IK1 Ca2+-activated K+ Channels. Journal of Biological Chemistry, 2001, 276, 37980-37985.	3.4	101
17	Neuron death and inflammation in a rat model of intracerebral hemorrhage: Effects of delayed minocycline treatment. Brain Research, 2007, 1136, 208-218.	2.2	98
18	Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats. European Journal of Neuroscience, 2008, 28, 1316-1328.	2.6	97

LYANNE C SCHLICHTER

#	Article	IF	CITATIONS
19	Multidrug Resistance Protein (MRP) 4- and MRP 5-Mediated Efflux of 9-(2-Phosphonylmethoxyethyl)adenine by Microglia. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1221-1229.	2.5	91
20	White matter injury in young and aged rats after intracerebral hemorrhage. Experimental Neurology, 2008, 214, 266-275.	4.1	83
21	Suppression of the rat microglia Kv1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation. European Journal of Neuroscience, 2000, 12, 1949-1960.	2.6	79
22	Age-Related Comparisons of Evolution of the Inflammatory Response After Intracerebral Hemorrhage in Rats. Translational Stroke Research, 2012, 3, 132-146.	4.2	78
23	HERG-like K+ Channels in Microglia. Journal of General Physiology, 1998, 111, 781-794.	1.9	77
24	Functional Expression of the Multidrug Resistance Protein 1 in Microglia. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 282-290.	2.5	76
25	IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia. Frontiers in Cellular Neuroscience, 2014, 8, 183.	3.7	74
26	Inhibition of the Ca ²⁺ -Dependent K ⁺ Channel, <i>KCNN4</i> /KCa3.1, Improves Tissue Protection and Locomotor Recovery after Spinal Cord Injury. Journal of Neuroscience, 2011, 31, 16298-16308.	3.6	71
27	The Ca2+ activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. Journal of Neuroinflammation, 2010, 7, 4.	7.2	69
28	Selective Activation of KCa3.1 and CRAC Channels by P2Y2 Receptors Promotes Ca2+ Signaling, Store Refilling and Migration of Rat Microglial Cells. PLoS ONE, 2013, 8, e62345.	2.5	69
29	Regulation of an ERG K+ Current by Src Tyrosine Kinase. Journal of Biological Chemistry, 2002, 277, 13673-13681.	3.4	67
30	Integration of K+and Cl-currents regulate steady-state and dynamic membrane potentials in cultured rat microglia. Journal of Physiology, 2005, 567, 869-890.	2.9	67
31	Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K+ channels and migration. Journal of Neuroinflammation, 2017, 14, 166.	7.2	67
32	After Intracerebral Hemorrhage, Oligodendrocyte Precursors Proliferate and Differentiate Inside White-Matter Tracts in the Rat Striatum. Translational Stroke Research, 2016, 7, 192-208.	4.2	65
33	Complex molecular and functional outcomes of single versus sequential cytokine stimulation of rat microglia. Journal of Neuroinflammation, 2016, 13, 66.	7.2	64
34	Smallâ€conductance Cl [–] channels contribute to volume regulation and phagocytosis in microglia. European Journal of Neuroscience, 2007, 26, 2119-2130.	2.6	60
35	Evolution of Inflammation and White Matter Injury in a Model of Transient Focal Ischemia. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1-15.	1.7	60
36	Podosomes in migrating microglia: components and matrix degradation. Journal of Neuroinflammation, 2012, 9, 190.	7.2	60

LYANNE C SCHLICHTER

#	Article	IF	CITATIONS
37	Expression and Contributions of TRPM7 and KCa2.3/SK3 Channels to the Increased Migration and Invasion of Microglia in Anti-Inflammatory Activation States. PLoS ONE, 2014, 9, e106087.	2.5	59
38	A large, multiple-conductance chloride channel in normal human T lymphocytes. Pflugers Archiv European Journal of Physiology, 1990, 416, 413-421.	2.8	58
39	Expression and contributions of the Kir2.1 inward-rectifier K+ channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states. Frontiers in Cellular Neuroscience, 2015, 9, 185.	3.7	52
40	Microglial SK3 and SK4 Currents and Activation State are Modulated by the Neuroprotective Drug, Riluzole. Journal of NeuroImmune Pharmacology, 2013, 8, 227-237.	4.1	50
41	Dominance of E. coli phagocytosis over LPS in the inflammatory response of microglia. Journal of Neuroimmunology, 2010, 227, 111-119.	2.3	48
42	Molecular and Cellular Responses to Interleukin-4 Treatment in a Rat Model of Transient Ischemia. Journal of Neuropathology and Experimental Neurology, 2016, 75, 1058-1071.	1.7	46
43	SC1/Hevin and Reactive Gliosis After Transient Ischemic Stroke in Young and Aged Rats. Journal of Neuropathology and Experimental Neurology, 2011, 70, 913-929.	1.7	45
44	PKA Reduces the Rat and Human KCa3.1 Current, CaM Binding, and Ca ²⁺ Signaling, Which Requires Ser332/334 in the CaM-Binding C Terminus. Journal of Neuroscience, 2014, 34, 13371-13383.	3.6	44
45	Reversed Na ⁺ /Ca ²⁺ Exchange Contributes to Ca ²⁺ Influx and Respiratory Burst in Microglia. Channels, 2007, 1, 366-376.	2.8	43
46	Swelling activated Cl- channels in microglia. Channels, 2011, 5, 128-137.	2.8	34
47	Comparing Effects of Transforming Growth Factor β1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels. Frontiers in Cellular Neuroscience, 2018, 12, 115.	3.7	33
48	KCa3.1/IK1 Channel Regulation by cGMP-Dependent Protein Kinase (PKG) via Reactive Oxygen Species and CaMKII in Microglia: An Immune Modulating Feedback System?. Frontiers in Immunology, 2015, 6, 153.	4.8	30
49	SC1/Hevin Identifies Early White Matter Injury After Ischemia and Intracerebral Hemorrhage in Young and Aged Rats. Journal of Neuropathology and Experimental Neurology, 2012, 71, 480-493.	1.7	25
50	Targeting K _V channels rescues retinal ganglion cells in vivo directly and by reducing inflammation. Channels, 2010, 4, 337-346.	2.8	21
51	Modulation of the ERG K+ Current by the Tyrosine Phosphatase, SHP-1. Journal of Biological Chemistry, 2002, 277, 48130-48138.	3.4	18
52	Criteria for perforated-patch recordings: Ion currents versus dye permeation in human T lymphocytes. Pflugers Archiv European Journal of Physiology, 1993, 424, 511-515.	2.8	15
53	Sex- and Development-Dependent Responses of Rat Microglia to Pro- and Anti-inflammatory Stimulation. Frontiers in Cellular Neuroscience, 2018, 12, 433.	3.7	13
54	Regulation of hERG and hEAG Channels by Src and by SHP-1 Tyrosine Phosphatase via an ITIM Region in the Cyclic Nucleotide Binding Domain. PLoS ONE, 2014, 9, e90024.	2.5	9

#	Article	IF	CITATIONS
55	Inflammation and White Matter Injury in Animal Models of Ischemic Stroke. , 2014, , 461-504.		3
56	Morphological Assessments of Focal Cerebral Ischemia: White Matter Injury. Springer Protocols, 2012, , 99-105.	0.3	0