
Benoît Girard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6280053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Model of the Transition from Novice to Expert Interaction Techniques. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-33.	5.7	2
2	Basal Ganglia: Control of Saccades. , 2022, , 376-379.		0
3	A biologically constrained spiking neural network model of the primate basal ganglia with overlapping pathways exhibits action selection. European Journal of Neuroscience, 2021, 53, 2254-2277.	2.6	20
4	Modeling awake hippocampal reactivations with model-based bidirectional search. Biological Cybernetics, 2020, 114, 231-248.	1.3	12
5	How to Reduce Computation Time While Sparing Performance During Robot Navigation? A Neuro-Inspired Architecture for Autonomous Shifting Between Model-Based and Model-Free Learning. Lecture Notes in Computer Science, 2020, , 68-79.	1.3	7
6	When Artificial Intelligence and Computational Neuroscience Meet. , 2020, , 303-335.		2
7	Impacts of inter-trial interval duration on a computational model of sign-tracking vs. goal-tracking behaviour. Psychopharmacology, 2019, 236, 2373-2388.	3.1	6
8	Dopamine blockade impairs the exploration-exploitation trade-off in rats. Scientific Reports, 2019, 9, 6770.	3.3	54
9	Basal Ganglia: Control of Saccades. , 2019, , 1-3.		0
10	Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task. Behavioural Brain Research, 2018, 355, 76-89.	2.2	9
11	On-line fusion of trackers for single-object tracking. Pattern Recognition, 2018, 74, 459-473.	8.1	24
12	Sequential Action Selection and Active Sensing for Budgeted Localization in Robot Navigation. International Journal of Semantic Computing, 2018, 12, 109-127.	0.5	1
13	Hippocampal replays under the scrutiny of reinforcement learning models. Journal of Neurophysiology, 2018, 120, 2877-2896.	1.8	32
14	Toward Self-Aware Robots. Frontiers in Robotics and AI, 2018, 5, 88.	3.2	35
15	Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays. Lecture Notes in Computer Science, 2018, , 16-27.	1.3	6
16	A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Scientific Reports, 2017, 7, 17812.	3.3	58
17	Sustainable computational science: the ReScience initiative. PeerJ Computer Science, 2017, 3, e142.	4.5	86
18	Respective Advantages and Disadvantages of Model-based and Model-free Reinforcement Learning in a Robotics Neuro-inspired Cognitive Architecture. Procedia Computer Science, 2015, 71, 178-184.	2.0	13

Benoît Girard

#	Article	IF	CITATIONS
19	Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning. Frontiers in Behavioral Neuroscience, 2015, 9, 225.	2.0	44
20	Motor Cost Influences Perceptual Decisions. PLoS ONE, 2015, 10, e0144841.	2.5	38
21	Which criteria for autonomously shifting between goal-directed and habitual behaviors in robots?. , 2015, , .		7
22	Biomimetic race model of the loop between the superior colliculus and the basal ganglia: Subcortical selection of saccade targets. Neural Networks, 2015, 67, 54-73.	5.9	6
23	Saccade learning with concurrent cortical and subcortical basal ganglia loops. Frontiers in Computational Neuroscience, 2014, 8, 48.	2.1	10
24	A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of Computational Neuroscience, 2014, 36, 445-468.	1.0	25
25	Design of a Control Architecture for Habit Learning in Robots. Lecture Notes in Computer Science, 2014, , 249-260.	1.3	15
26	Basal Ganglia: Control of Saccades. , 2014, , 1-4.		0
27	Learning a sequence of motor responses to attain reward: a speed-accuracy trade-off. BMC Neuroscience, 2013, 14, .	1.9	Ο
28	Biomimetic stochastic race model in the subcortical saccadic selection processes: a model of the tecto-basal loops. BMC Neuroscience, 2013, 14, .	1.9	0
29	Neuro-inspired Navigation Strategies Shifting for Robots: Integration of a Multiple Landmark Taxon Strategy. Lecture Notes in Computer Science, 2012, , 62-73.	1.3	4
30	Maximum entropy perception-action space: a Bayesian model of eye movement selection. , 2011, , .		0
31	Path planning versus cue responding: a bio-inspired model of switching between navigation strategies. Biological Cybernetics, 2010, 103, 299-317.	1.3	45
32	Importing the computational neuroscience toolbox into neuro-evolution-application to basal ganglia. , 2010, , .		10
33	An Integrated Neuromimetic Model of the Saccadic Eye Movements for the Psikharpax Robot. Lecture Notes in Computer Science, 2010, , 114-125.	1.3	5
34	Analyzing Interactions between Cue-Guided and Place-Based Navigation with a Computational Model of Action Selection: Influence of Sensory Cues and Training. Lecture Notes in Computer Science, 2010, , 335-346.	1.3	3
35	Multi-objective Evolutionary Algorithms to Investigate Neurocomputational Issues: The Case Study of Basal Ganglia Models. Lecture Notes in Computer Science, 2010, , 597-606.	1.3	2
36	Bayesian models of eye movement selection with retinotopic maps. Biological Cybernetics, 2009, 100, 203-214.	1.3	9

Benoît Girard

#	Article	IF	CITATIONS
37	Analyzing Interactions between Navigation Strategies Using a Computational Model of Action Selection. Lecture Notes in Computer Science, 2008, , 71-86.	1.3	8
38	Geometry of the superior colliculus mapping and efficient oculomotor computation. Biological Cybernetics, 2007, 97, 279-292.	1.3	33
39	The Psikharpax project: towards building an artificial rat. Robotics and Autonomous Systems, 2005, 50, 211-223.	5.1	68
40	Integration of Navigation and Action Selection Functionalities in a Computational Model of Cortico-Basal-Ganglia–Thalamo-Cortical Loops. Adaptive Behavior, 2005, 13, 115-130.	1.9	22
41	Actor–Critic Models of Reinforcement Learning in the Basal Ganglia: From Natural to Artificial Rats. Adaptive Behavior, 2005, 13, 131-148.	1.9	54
42	A BASAL GANGLIA INSPIRED MODEL OF ACTION SELECTION EVALUATED IN A ROBOTIC SURVIVAL TASK. Journal of Integrative Neuroscience, 2003, 02, 179-200.	1.7	31
43	Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics. Frontiers in Neurorobotics, 0, 16, .	2.8	2