List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6279055/publications.pdf Version: 2024-02-01

		6254	5679
314	31,524	80	162
papers	citations	h-index	g-index
222	222	222	07007
323	323	323	27287
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel MAPK/AKT-impairing germline NRAS variant identified in a melanoma-prone family. Familial Cancer, 2022, 21, 347-355.	1.9	1
2	Mechanism of activation and the rewired network: New drug design concepts. Medicinal Research Reviews, 2022, 42, 770-799.	10.5	15
3	Interpretable artificial intelligence and exascale molecular dynamics simulations to reveal kinetics: Applications to Alzheimer's disease. Current Opinion in Structural Biology, 2022, 72, 103-113.	5.7	13
4	How can same-gene mutations promote both cancer and developmental disorders?. Science Advances, 2022, 8, eabm2059.	10.3	29
5	Allostery, and how to define and measure signal transduction. Biophysical Chemistry, 2022, 283, 106766.	2.8	24
6	Deep learning for drug repurposing: Methods, databases, and applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	48
7	Artificial intelligence approaches to human-microbiome protein–protein interactions. Current Opinion in Structural Biology, 2022, 73, 102328.	5.7	13
8	Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. Journal of Molecular Biology, 2022, 434, 167569.	4.2	26
9	SARS-CoV-2 Interactome 3D: A Web interface for 3D visualization and analysis of SARS-CoV-2–human mimicry and interactions. Bioinformatics, 2022, 38, 1455-1457.	4.1	3
10	The mechanism of activation of MEK1 by B-Raf and KSR1. Cellular and Molecular Life Sciences, 2022, 79, 281.	5.4	7
11	Open Structural Data in Precision Medicine. Annual Review of Biomedical Data Science, 2022, 5, 95-117.	6.5	7
12	The structural basis of BCR-ABL recruitment of GRB2 in chronic myelogenous leukemia. Biophysical Journal, 2022, 121, 2251-2265.	0.5	9
13	Neurodevelopmental disorders, immunity, and cancer are connected. IScience, 2022, 25, 104492.	4.1	10
14	PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Research, 2021, 81, 237-247.	0.9	26
15	Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Molecular Cancer Research, 2021, 19, 543-548.	3.4	23
16	A new precision medicine initiative at the dawn of exascale computing. Signal Transduction and Targeted Therapy, 2021, 6, 3.	17.1	31
17	The mechanism of activation of monomeric B-Raf V600E. Computational and Structural Biotechnology Journal, 2021, 19, 3349-3363.	4.1	38
18	A network-based deep learning methodology for stratification of tumor mutations. Bioinformatics, 2021, 37, 82-88.	4.1	10

#	Article	IF	CITATIONS
19	Active and Inactive Cdc42 Differ in Their Insert Region Conformational Dynamics. Biophysical Journal, 2021, 120, 306-318.	0.5	20
20	Inhibition of Nonfunctional Ras. Cell Chemical Biology, 2021, 28, 121-133.	5.2	23
21	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	47.7	406
22	Trastuzumab Blocks the Receiver Function of HER2 Leading to the Population Shifts of HER2-Containing Homodimers and Heterodimers. Antibodies, 2021, 10, 7.	2.5	10
23	MSA-Regularized Protein Sequence Transformer toward Predicting Genome-Wide Chemical-Protein Interactions: Application to GPCRome Deorphanization. Journal of Chemical Information and Modeling, 2021, 61, 1570-1582.	5.4	20
24	Drugging multiple same-allele driver mutations in cancer. Expert Opinion on Drug Discovery, 2021, 16, 1-6.	5.0	10
25	Mechanistic Differences of Activation of Rac1 ^{P29S} and Rac1 ^{A159V} . Journal of Physical Chemistry B, 2021, 125, 3790-3802.	2.6	9
26	The mechanism of full activation of tumor suppressor PTEN at the phosphoinositide-enriched membrane. IScience, 2021, 24, 102438.	4.1	30
27	The structural basis of Akt PH domain interaction with calmodulin. Biophysical Journal, 2021, 120, 1994-2008.	0.5	10
28	Normal Mode Analysis of KRas4B Reveals Partner Specific Dynamics. Journal of Physical Chemistry B, 2021, 125, 5210-5221.	2.6	7
29	Ras isoform-specific expression, chromatin accessibility, and signaling. Biophysical Reviews, 2021, 13, 489-505.	3.2	14
30	B-Raf autoinhibition in the presence and absence of 14-3-3. Structure, 2021, 29, 768-777.e2.	3.3	26
31	Signaling in the crowded cell. Current Opinion in Structural Biology, 2021, 71, 43-50.	5.7	8
32	The dynamic nature of the K-Ras/calmodulin complex can be altered by oncogenic mutations. Current Opinion in Structural Biology, 2021, 71, 164-170.	5.7	8
33	My personal mutanome: a computational genomic medicine platform for searching network perturbing alleles linking genotype to phenotype. Genome Biology, 2021, 22, 53.	8.8	11
34	Editorial overview: Catalysis and regulation: The beating heart of biology. Current Opinion in Structural Biology, 2021, 71, iii-v.	5.7	1
35	The mechanism of Raf activation through dimerization. Chemical Science, 2021, 12, 15609-15619.	7.4	15
36	Anticancer drug resistance: An update and perspective. Drug Resistance Updates, 2021, 59, 100796.	14.4	122

#	Article	IF	CITATIONS
37	Antigen Binding Reshapes Antibody Energy Landscape and Conformation Dynamics. , 2021, , .		1
38	Computational network biology: Data, models, and applications. Physics Reports, 2020, 846, 1-66.	25.6	126
39	Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB Journal, 2020, 34, 16-29.	0.5	23
40	Structural Features that Distinguish Inactive and Active PI3K Lipid Kinases. Journal of Molecular Biology, 2020, 432, 5849-5859.	4.2	28
41	Medin Oligomer Membrane Pore Formation: A Potential Mechanism of Vascular Dysfunction. Biophysical Journal, 2020, 118, 2769-2782.	0.5	9
42	The Mystery of Rap1 Suppression of Oncogenic Ras. Trends in Cancer, 2020, 6, 369-379.	7.4	23
43	Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Medicinal Research Reviews, 2020, 40, 2386-2426.	10.5	61
44	Nucleotide-Specific Autoinhibition of Full-Length K-Ras4B Identified by Extensive Conformational Sampling. Frontiers in Molecular Biosciences, 2020, 7, 145.	3.5	11
45	SOS1 interacts with Grb2 through regions that induce closed nSH3 conformations. Journal of Chemical Physics, 2020, 153, 045106.	3.0	14
46	Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chemical Neuroscience, 2020, 11, 3233-3244.	3.5	12
47	Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2020, 2, e667-e676.	12.3	349
48	Peptide–MHC Binding Reveals Conserved Allosteric Sites in MHC Class I- and Class II-Restricted T Cell Receptors (TCRs). Journal of Molecular Biology, 2020, 432, 166697.	4.2	12
49	PI3K inhibitors: review and new strategies. Chemical Science, 2020, 11, 5855-5865.	7.4	106
50	Are Parallel Proliferation Pathways Redundant?. Trends in Biochemical Sciences, 2020, 45, 554-563.	7.5	21
51	Ras assemblies and signaling at the membrane. Current Opinion in Structural Biology, 2020, 62, 140-148.	5.7	26
52	Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes. PLoS Computational Biology, 2020, 16, e1007701.	3.2	32
53	HMI-PRED: A Web Server for Structural Prediction of Host-Microbe Interactions Based on Interface Mimicry. Journal of Molecular Biology, 2020, 432, 3395-3403.	4.2	34
54	Oncogenic K-Ras4B Dimerization Enhances Downstream Mitogen-activated Protein Kinase Signaling. Journal of Molecular Biology, 2020, 432, 1199-1215.	4.2	16

#	Article	IF	CITATIONS
55	Target identification among known drugs by deep learning from heterogeneous networks. Chemical Science, 2020, 11, 1775-1797.	7.4	193
56	Network-based prediction of drug–target interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics, 2020, 36, 2805-2812.	4.1	101
57	High-Affinity Interactions of the nSH3/cSH3 Domains of Grb2 with the C-Terminal Proline-Rich Domain of SOS1. Journal of the American Chemical Society, 2020, 142, 3401-3411.	13.7	25
58	The quaternary assembly of KRas4B with Raf-1 at the membrane. Computational and Structural Biotechnology Journal, 2020, 18, 737-748.	4.1	50
59	Protein ensembles link genotype to phenotype. PLoS Computational Biology, 2019, 15, e1006648.	3.2	58
60	Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity. Cell Host and Microbe, 2019, 26, 100-113.e8.	11.0	109
61	The Structural Basis of the Farnesylated and Methylated KRas4B Interaction with Calmodulin. Structure, 2019, 27, 1647-1659.e4.	3.3	30
62	Does Ras Activate Raf and PI3K Allosterically?. Frontiers in Oncology, 2019, 9, 1231.	2.8	41
63	Ca ²⁺ -Dependent Switch of Calmodulin Interaction Mode with Tandem IQ Motifs in the Scaffolding Protein IQGAP1. Biochemistry, 2019, 58, 4903-4911.	2.5	12
64	Head and Neck Cancers Promote an Inflammatory Transcriptome through Coactivation of Classic and Alternative NF-κB Pathways. Cancer Immunology Research, 2019, 7, 1760-1774.	3.4	17
65	Emerging Allosteric Mechanism of EGFR Activation in Physiological and Pathological Contexts. Biophysical Journal, 2019, 117, 5-13.	0.5	35
66	A Systems Pharmacology Approach Uncovers Wogonoside as an Angiogenesis Inhibitor of Triple-Negative Breast Cancer by Targeting Hedgehog Signaling. Cell Chemical Biology, 2019, 26, 1143-1158.e6.	5.2	53
67	The structural basis for Ras activation of PI3Kα lipid kinase. Physical Chemistry Chemical Physics, 2019, 21, 12021-12028.	2.8	43
68	deepDR: a network-based deep learning approach to <i>in silico</i> drug repositioning. Bioinformatics, 2019, 35, 5191-5198.	4.1	343
69	The mechanism of PI3Kα activation at the atomic level. Chemical Science, 2019, 10, 3671-3680.	7.4	75
70	Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Computational Biology, 2019, 15, e1006658.	3.2	83
71	A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications. PLoS Computational Biology, 2019, 15, e1006772.	3.2	14
72	Allostery in Its Many Disguises: From Theory to Applications. Structure, 2019, 27, 566-578.	3.3	285

#	Article	IF	CITATIONS
73	Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules, 2019, 24, 637.	3.8	16
74	Why Are Some Driver Mutations Rare?. Trends in Pharmacological Sciences, 2019, 40, 919-929.	8.7	29
75	Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Frontiers in Oncology, 2019, 9, 1236.	2.8	28
76	Antigen binding allosterically promotes Fc receptor recognition. MAbs, 2019, 11, 58-74.	5.2	48
77	Developments in integrative modeling with dynamical interfaces. Current Opinion in Structural Biology, 2019, 56, 11-17.	5.7	14
78	Precision medicine review: rare driver mutations and their biophysical classification. Biophysical Reviews, 2019, 11, 5-19.	3.2	43
79	Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacological Reviews, 2019, 71, 1-19.	16.0	47
80	Interface-Based Structural Prediction of Novel Host-Pathogen Interactions. Methods in Molecular Biology, 2019, 1851, 317-335.	0.9	21
81	Oncogenic KRas mobility in the membrane and signaling response. Seminars in Cancer Biology, 2019, 54, 109-113.	9.6	20
82	Is Nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant?. Seminars in Cancer Biology, 2019, 54, 114-120.	9.6	35
83	Dynamic Protein Allosteric Regulation and Disease. Advances in Experimental Medicine and Biology, 2019, 1163, 25-43.	1.6	13
84	Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2. Journal of Biological Chemistry, 2018, 293, 3685-3699.	3.4	36
85	Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Biochemistry, 2018, 57, 1917-1928.	2.5	10
86	Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure, 2018, 26, 513-525.e2.	3.3	60
87	Atomistic-level study of the interactions between hIAPP protofibrils and membranes: Influence of pH and lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1818-1825.	2.6	33
88	Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Research, 2018, 78, 593-602.	0.9	96
89	Structure and energetic basis of overrepresented λ light chain in systemic light chain amyloidosis patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2294-2303.	3.8	6
90	Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2304-2314.	3.8	16

#	Article	IF	CITATIONS
91	Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science, 2018, 362, 1177-1182.	12.6	133
92	Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophysical Reviews, 2018, 10, 1263-1282.	3.2	40
93	Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. Journal of Biological Chemistry, 2018, 293, 17336-17348.	3.4	35
94	Molecular Recognition between AÎ ² -Specific Single-Domain Antibody and AÎ ² Misfolded Aggregates. Antibodies, 2018, 7, 25.	2.5	10
95	Allosteric activation of RAF in the MAPK signaling pathway. Current Opinion in Structural Biology, 2018, 53, 100-106.	5.7	23
96	Calmodulin (CaM) Activates PI3Kα by Targeting the "Soft―CaM-Binding Motifs in Both the nSH2 and cSH2 Domains of p85α. Journal of Physical Chemistry B, 2018, 122, 11137-11146.	2.6	15
97	Arl2-Mediated Allosteric Release of Farnesylated KRas4B from Shuttling Factor PDEδ. Journal of Physical Chemistry B, 2018, 122, 7503-7513.	2.6	12
98	The distinct structural preferences of tau protein repeat domains. Chemical Communications, 2018, 54, 5700-5703.	4.1	35
99	KRAS Activating Signaling Triggers Arteriovenous Malformations. Trends in Biochemical Sciences, 2018, 43, 481-483.	7.5	17
100	Peptide–MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. Journal of Biological Chemistry, 2018, 293, 15991-16005.	3.4	45
101	Allosteric KRas4B Can Modulate SOS1 Fast and Slow Ras Activation Cycles. Biophysical Journal, 2018, 115, 629-641.	0.5	24
102	Familial Mutations May Switch Conformational Preferences in α-Synuclein Fibrils. ACS Chemical Neuroscience, 2017, 8, 837-849.	3.5	27
103	Calmodulin and PI3K Signaling in KRAS Cancers. Trends in Cancer, 2017, 3, 214-224.	7.4	58
104	A New View of Pathway-Driven Drug Resistance in Tumor Proliferation. Trends in Pharmacological Sciences, 2017, 38, 427-437.	8.7	68
105	The dynamic mechanism of RASSF5 and MST kinase activation by Ras. Physical Chemistry Chemical Physics, 2017, 19, 6470-6480.	2.8	22
106	Allostery modulates the beat rate of a cardiac pacemaker. Journal of Biological Chemistry, 2017, 292, 6429-6430.	3.4	5
107	A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids. Methods in Molecular Biology, 2017, 1529, 323-352.	0.9	2
108	Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design. Methods in Molecular Biology, 2017, 1529, 439-446.	0.9	16

#	Article	IF	CITATIONS
109	Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction. Journal of Biological Chemistry, 2017, 292, 12544-12559.	3.4	40
110	Intrinsic protein disorder in oncogenic KRAS signaling. Cellular and Molecular Life Sciences, 2017, 74, 3245-3261.	5.4	45
111	PDEδ Binding to Ras Isoforms Provides a Route to Proper Membrane Localization. Journal of Physical Chemistry B, 2017, 121, 5917-5927.	2.6	26
112	Exploring the Aggregation Mechanism of Intrinsically Disordered Tau Protein. World Scientific Lecture and Course Notes in Chemistry, 2017, , 51-71.	0.2	1
113	Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. Journal of Biological Chemistry, 2017, 292, 18325-18343.	3.4	53
114	Prediction of Host–Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer. Journal of Molecular Biology, 2017, 429, 3925-3941.	4.2	28
115	Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH2 Domains. Biophysical Journal, 2017, 113, 1956-1967.	0.5	51
116	Energetic redistribution in allostery to execute protein function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7480-7482.	7.1	41
117	Compilation and Analysis of Enzymes, Engineered Antibodies, and Nanoparticles Designed to Interfere with Amyloidâ€Î² Aggregation. Israel Journal of Chemistry, 2017, 57, 622-633.	2.3	2
118	Prediction of Protein Interactions by Structural Matching: Prediction of PPI Networks and the Effects of Mutations on PPIs that Combines Sequence and Structural Information. Methods in Molecular Biology, 2017, 1558, 255-270.	0.9	6
119	How can computation advance microbiome research?. PLoS Computational Biology, 2017, 13, e1005547.	3.2	4
120	Structural host-microbiota interaction networks. PLoS Computational Biology, 2017, 13, e1005579.	3.2	51
121	Network approaches and applications in biology. PLoS Computational Biology, 2017, 13, e1005771.	3.2	40
122	Allostery: An Overview of Its History, Concepts, Methods, and Applications. PLoS Computational Biology, 2016, 12, e1004966.	3.2	194
123	Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chemical Society Reviews, 2016, 45, 4929-4952.	38.1	150
124	Independent and core pathways in oncogenic KRAS signaling. Expert Review of Proteomics, 2016, 13, 711-716.	3.0	16
125	Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy. Seminars in Cell and Developmental Biology, 2016, 58, 55-59.	5.0	17
126	Inhibitors of Ras–SOS Interactions. ChemMedChem, 2016, 11, 814-821.	3.2	62

#	Article	IF	CITATIONS
127	Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9. Angewandte Chemie, 2016, 128, 5797-5801.	2.0	1
128	OUP accepted manuscript. Protein Engineering, Design and Selection, 2016, 30, 67-76.	2.1	8
129	The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B. Scientific Reports, 2016, 6, 21949.	3.3	149
130	The higher level of complexity of Kâ€Ras4B activation at the membrane. FASEB Journal, 2016, 30, 1643-1655.	0.5	73
131	TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2646-2655.	2.4	30
132	How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?. ACS Chemical Neuroscience, 2016, 7, 565-575.	3.5	27
133	Oncogenic KRAS signaling and YAP1/β-catenin: Similar cell cycle control in tumor initiation. Seminars in Cell and Developmental Biology, 2016, 58, 79-85.	5.0	54
134	<i>PRISM-EM</i> : template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1137-1148.	2.3	17
135	Conformational dynamics of cancer-associated MyD88-TIR domain mutant L252P (L265P) allosterically tilts the landscape toward homo-dimerization. Protein Engineering, Design and Selection, 2016, 29, 347-354.	2.1	18
136	RASSF5: An MST activator and tumor suppressor in vivo but opposite in vitro. Current Opinion in Structural Biology, 2016, 41, 217-224.	5.7	29
137	Introduction to Protein Ensembles and Allostery. Chemical Reviews, 2016, 116, 6263-6266.	47.7	105
138	Conformational selection in amyloid-based immunotherapy: Survey of crystal structures of antibody-amyloid complexes. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2672-2681.	2.4	23
139	Pathogen mimicry of host protein-protein interfaces modulates immunity. Seminars in Cell and Developmental Biology, 2016, 58, 136-145.	5.0	45
140	Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochemical Journal, 2016, 473, 1719-1732.	3.7	92
141	Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chemical Reviews, 2016, 116, 6516-6551.	47.7	302
142	Ras Conformational Ensembles, Allostery, and Signaling. Chemical Reviews, 2016, 116, 6607-6665.	47.7	290
143	Comparison of the Conformations of <i>KRAS</i> Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences. Journal of Physical Chemistry B, 2016, 120, 667-679.	2.6	45
144	A New View of Ras Isoforms in Cancers. Cancer Research, 2016, 76, 18-23.	0.9	87

#	Article	IF	CITATIONS
145	Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly. Journal of Virology, 2016, 90, 1773-1787.	3.4	34
146	Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant. Physical Chemistry Chemical Physics, 2016, 18, 8098-8107.	2.8	23
147	The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chemical Reviews, 2016, 116, 6391-6423.	47.7	302
148	K-Ras4B/calmodulin/PI3Kα: A promising new adenocarcinoma-specific drug target?. Expert Opinion on Therapeutic Targets, 2016, 20, 831-842.	3.4	29
149	Coupling of the non-amyloid-component (NAC) domain and the KTK(E/Q)GV repeats stabilize the α-synuclein fibrils. European Journal of Medicinal Chemistry, 2016, 121, 841-850.	5.5	28
150	Editorial overview: Folding and binding: Dynamic conformational heterogeneity is pivotal to cell life. Current Opinion in Structural Biology, 2016, 36, iv-vi.	5.7	4
151	The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Current Opinion in Structural Biology, 2016, 36, 10-17.	5.7	38
152	Amylin–Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Physical Chemistry Chemical Physics, 2016, 18, 2330-2338.	2.8	74
153	Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Computational Biology, 2016, 12, e1004619.	3.2	188
154	The Structural Basis of ATP as an Allosteric Modulator. Biophysical Journal, 2015, 108, 528a.	0.5	4
155	The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway. Scientific Reports, 2015, 5, 13128.	3.3	98
156	Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm. PLoS Computational Biology, 2015, 11, e1004470.	3.2	47
157	Computational Methods for Exploration and Analysis of Macromolecular Structure and Dynamics. PLoS Computational Biology, 2015, 11, e1004585.	3.2	13
158	Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization. Journal of Chemical Information and Modeling, 2015, 55, 1218-1230.	5.4	16
159	GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site. Journal of Biological Chemistry, 2015, 290, 28887-28900.	3.4	73
160	Plasma membrane regulates Ras signaling networks. Cellular Logistics, 2015, 5, e1136374.	0.9	35
161	High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site. Biophysical Journal, 2015, 109, 2602-2613.	0.5	67
162	â€~Latent drivers' expand the cancer mutational landscape. Current Opinion in Structural Biology, 2015, 32, 25-32.	5.7	68

#	Article	IF	CITATIONS
163	Oligomerization and nanocluster organization render specificity. Biological Reviews, 2015, 90, 587-598.	10.4	42
164	The Design of Covalent Allosteric Drugs. Annual Review of Pharmacology and Toxicology, 2015, 55, 249-267.	9.4	96
165	The Role of Allostery in the Termination of Second Messenger Signaling. Biophysical Journal, 2015, 109, 1080-1081.	0.5	4
166	Aβ "Stretching-and-Packing―Cross-Seeding Mechanism Can Trigger Tau Protein Aggregation. Journal of Physical Chemistry Letters, 2015, 6, 3276-3282.	4.6	42
167	GTP-Dependent K-Ras Dimerization. Structure, 2015, 23, 1325-1335.	3.3	187
168	Advancements and Challenges in Computational Biology. PLoS Computational Biology, 2015, 11, e1004053.	3.2	14
169	The Key Role of Calmodulin in <i>KRAS</i> -Driven Adenocarcinomas. Molecular Cancer Research, 2015, 13, 1265-1273.	3.4	72
170	How to Write a Presubmission Inquiry. PLoS Computational Biology, 2015, 11, e1004098.	3.2	2
171	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	3.3	159
172	Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nature Structural and Molecular Biology, 2015, 22, 499-505.	8.2	701
173	Allosteric Effects of the Oncogenic RasQ61L Mutant on Raf-RBD. Structure, 2015, 23, 505-516.	3.3	201
174	Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region. Journal of Biological Chemistry, 2015, 290, 9465-9477.	3.4	98
175	Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation. Expert Review of Proteomics, 2015, 12, 669-682.	3.0	37
176	A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway. Biophysical Journal, 2015, 109, 1214-1226.	0.5	62
177	Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP. Biophysical Journal, 2015, 109, 1227-1239.	0.5	31
178	The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. Structure, 2015, 23, 1725-1734.	3.3	58
179	Allostery without a conformational change? Revisiting the paradigm. Current Opinion in Structural Biology, 2015, 30, 17-24.	5.7	175
180	Dynamics differentiate between active and inactive inteins. European Journal of Medicinal Chemistry, 2015, 91, 51-62.	5.5	11

#	Article	IF	CITATIONS
181	From "What Is?―to "What Isn't?―Computational Biology. PLoS Computational Biology, 2015, 11, e1004318.	3.2	5
182	The Significance of the 2013 Nobel Prize in Chemistry and the Challenges Ahead. PLoS Computational Biology, 2014, 10, e1003423.	3.2	9
183	Making Biomolecular Simulations Accessible in the Post-Nobel Prize Era. PLoS Computational Biology, 2014, 10, e1003786.	3.2	5
184	The Structural Basis of ATP as an Allosteric Modulator. PLoS Computational Biology, 2014, 10, e1003831.	3.2	76
185	The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPs in Inflammation and Cancer. PLoS Computational Biology, 2014, 10, e1003470.	3.2	63
186	A Unified View of "How Allostery Works― PLoS Computational Biology, 2014, 10, e1003394.	3.2	330
187	Principles of Allosteric Interactions in Cell Signaling. Journal of the American Chemical Society, 2014, 136, 17692-17701.	13.7	127
188	Dynamic multiprotein assemblies shape the spatial structure of cell signaling. Progress in Biophysics and Molecular Biology, 2014, 116, 158-164.	2.9	27
189	PRISM: a web server and repository for prediction of protein–protein interactions and modeling their 3D complexes. Nucleic Acids Research, 2014, 42, W285-W289.	14.5	187
190	Multiple conformational selection and induced fit events take place in allosteric propagation. Biophysical Chemistry, 2014, 186, 22-30.	2.8	105
191	The free energy landscape in translational science: how can somatic mutations result in constitutive oncogenic activation?. Physical Chemistry Chemical Physics, 2014, 16, 6332.	2.8	38
192	Free Energy Diagrams for Protein Function. Chemistry and Biology, 2014, 21, 311-318.	6.0	28
193	Unraveling structural mechanisms of allosteric drug action. Trends in Pharmacological Sciences, 2014, 35, 256-264.	8.7	111
194	A second molecular biology revolution? The energy landscapes of biomolecular function. Physical Chemistry Chemical Physics, 2014, 16, 6321.	2.8	82
195	Structural Insight into Tau Protein's Paradox of Intrinsically Disordered Behavior, Self-Acetylation Activity, and Aggregation. Journal of Physical Chemistry Letters, 2014, 5, 3026-3031.	4.6	81
196	Promiscuous and specific recognition among ephrins and Eph receptors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1729-1740.	2.3	35
197	An overview of recent advances in structural bioinformatics of protein–protein interactions and a guide to their principles. Progress in Biophysics and Molecular Biology, 2014, 116, 141-150.	2.9	65
198	Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection. Angewandte Chemie - International Edition, 2014, 53, 1590-1593.	13.8	38

#	Article	IF	CITATIONS
199	Non-Redundant Unique Interface Structures as Templates for Modeling Protein Interactions. PLoS ONE, 2014, 9, e86738.	2.5	66
200	The structural basis for cancer treatment decisions. Oncotarget, 2014, 5, 7285-7302.	1.8	43
201	The spatial structure of cell signaling systems. Physical Biology, 2013, 10, 045004.	1.8	39
202	The role of allostery in the ubiquitin–proteasome system. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 89-97.	5.2	28
203	A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 820-829.	2.3	45
204	â€~Pathway drug cocktail': targeting Ras signaling based on structural pathways. Trends in Molecular Medicine, 2013, 19, 695-704.	6.7	53
205	Allosteric Conformational Barcodes Direct Signaling in the Cell. Structure, 2013, 21, 1509-1521.	3.3	47
206	Structure and dynamics of molecular networks: A novel paradigm of drug discovery. , 2013, 138, 333-408.		779
207	Molecular insights into the reversible formation of tau protein fibrils. Chemical Communications, 2013, 49, 3582.	4.1	34
208	Allostery in Disease and in Drug Discovery. Cell, 2013, 153, 293-305.	28.9	586
209	The structural network of inflammation and cancer: Merits and challenges. Seminars in Cancer Biology, 2013, 23, 243-251.	9.6	62
210	The Underappreciated Role of Allostery in the Cellular Network. Annual Review of Biophysics, 2013, 42, 169-189.	10.0	152
211	The molecular basis of targeting protein kinases in cancer therapeutics. Seminars in Cancer Biology, 2013, 23, 235-242.	9.6	74
212	How Can PLOS Computational Biology Help the Biological Sciences?. PLoS Computational Biology, 2013, 9, e1003262.	3.2	0
213	New Methods Section in PLOS Computational Biology. PLoS Computational Biology, 2013, 9, e1002972.	3.2	0
214	Editorial (Hot Topic: From Allosteric Drugs to Allo-Network Drugs: State of the Art and Trends of) Tj ETQq0 0 0 rg	;BT_/Overlc 2.1	ock 10 Tf 50
215	Allo-Network Drugs: Extension of the Allosteric Drug Concept to Protein- Protein Interaction and Signaling Networks. Current Topics in Medicinal Chemistry, 2013, 13, 64-77.	2.1	68

A Future Vision for PLOS Computational Biology. PLoS Computational Biology, 2012, 8, e1002727. 3.2 0

#	Article	IF	CITATIONS
217	The Different Ways through Which Specificity Works in Orthosteric and Allosteric Drugs. Current Pharmaceutical Design, 2012, 18, 1311-1316.	1.9	98
218	Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau. Journal of the American Chemical Society, 2012, 134, 10271-10278.	13.7	63
219	Selective Molecular Recognition in Amyloid Growth and Transmission and Cross-Species Barriers. Journal of Molecular Biology, 2012, 421, 172-184.	4.2	76
220	Allosteric post-translational modification codes. Trends in Biochemical Sciences, 2012, 37, 447-455.	7.5	172
221	Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biology, 2012, 10, 2.	3.8	69
222	Cross-seeding and Conformational Selection between Three- and Four-repeat Human Tau Proteins. Journal of Biological Chemistry, 2012, 287, 14950-14959.	3.4	63
223	Synergistic Interactions between Repeats in Tau Protein and AÎ ² Amyloids May Be Responsible for Accelerated Aggregation via Polymorphic States. Biochemistry, 2011, 50, 5172-5181.	2.5	95
224	Allo-network drugs: harnessing allostery in cellular networks. Trends in Pharmacological Sciences, 2011, 32, 686-693.	8.7	132
225	Disordered proteins and network disorder in network descriptions of protein structure, dynamics and function. Hypotheses and a comprehensive review. Nature Precedings, 2011, , .	0.1	Ο
226	Gene-specific transcription activation via long-range allosteric shape-shifting. Biochemical Journal, 2011, 439, 15-25.	3.7	33
227	Dynamic Allostery: Linkers Are Not Merely Flexible. Structure, 2011, 19, 907-917.	3.3	196
228	Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends in Biochemical Sciences, 2010, 35, 539-546.	7.5	708
229	An integrated suite of fast docking algorithms. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3197-3204.	2.6	117
230	Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Nature Precedings, 2010, , .	0.1	11
231	Polymorphism in Alzheimer AÎ ² Amyloid Organization Reflects Conformational Selection in a Rugged Energy Landscape. Chemical Reviews, 2010, 110, 4820-4838.	47.7	265
232	Allostery and population shift in drug discovery. Current Opinion in Pharmacology, 2010, 10, 715-722.	3.5	176
233	Conformational ensembles, signal transduction and residue hot spots: application to drug discovery. Current Opinion in Drug Discovery & Development, 2010, 13, 527-37.	1.9	34
234	Amplification of signaling via cellular allosteric relay and protein disorder: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6887-6888.	7.1	36

#	Article	IF	CITATIONS
235	The Origin of Allosteric Functional Modulation: Multiple Pre-existing Pathways. Structure, 2009, 17, 1042-1050.	3.3	347
236	Protein–protein interaction networks: how can a hub protein bind so many different partners?. Trends in Biochemical Sciences, 2009, 34, 594-600.	7.5	125
237	The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 2009, 5, 789-796.	8.0	1,649
238	Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations. Protein Science, 2009, 11, 184-197.	7.6	364
239	Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Molecular BioSystems, 2009, 5, 207.	2.9	299
240	Towards inferring time dimensionality in protein–protein interaction networks by integrating structures: the p53 example. Molecular BioSystems, 2009, 5, 1770.	2.9	76
241	Principles of Proteinâ~ Protein Interactions: What are the Preferred Ways For Proteins To Interact?. Chemical Reviews, 2008, 108, 1225-1244.	47.7	568
242	FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Research, 2008, 36, W229-W232.	14.5	657
243	Allosteric effects in the marginally stable von Hippel–Lindau tumor suppressor protein and allostery-based rescue mutant design. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 901-906.	7.1	81
244	Topological properties of protein interaction networks from a structural perspective. Biochemical Society Transactions, 2008, 36, 1398-1403.	3.4	152
245	FireDock: Fast interaction refinement in molecular docking. Proteins: Structure, Function and Bioinformatics, 2007, 69, 139-159.	2.6	607
246	Similar Binding Sites and Different Partners: Implications to Shared Proteins in Cellular Pathways. Structure, 2007, 15, 341-354.	3.3	136
247	Comparison of the Human and Worm p53 Structures Suggests a Way for Enhancing Stabilityâ€. Biochemistry, 2006, 45, 3925-3933.	2.5	21
248	Hot Regions in Protein–Protein Interactions: The Organization and Contribution of Structurally Conserved Hot Spot Residues. Journal of Molecular Biology, 2005, 345, 1281-1294.	4.2	465
249	How Similar Are Protein Folding and Protein Binding Nuclei? Examination of Vibrational Motions of Energy Hot Spots and Conserved Residues. Biophysical Journal, 2005, 88, 1552-1559.	0.5	75
250	PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 2005, 33, W363-W367.	14.5	2,610
251	Is allostery an intrinsic property of all dynamic proteins?. Proteins: Structure, Function and Bioinformatics, 2004, 57, 433-443.	2.6	779
252	Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function and Bioinformatics, 2002, 47, 409-443.	2.6	46

#	Article	IF	CITATIONS
253	Thermodynamic Differences among Homologous Thermophilic and Mesophilic Proteins. Biochemistry, 2001, 40, 14152-14165.	2.5	119
254	Protein flexibility and electrostatic interactions. IBM Journal of Research and Development, 2001, 45, 499-512.	3.1	21
255	Building Blocks, Hinge-Bending Motions and Protein Topology. Journal of Biomolecular Structure and Dynamics, 2001, 19, 369-380.	3.5	11
256	Protein Folding: Binding of Conformationally Fluctuating Building Blocks Via Population Selection. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 399-433.	5.2	58
257	Automated multiple structure alignment and detection of a common substructural motif. Proteins: Structure, Function and Bioinformatics, 2001, 43, 235-245.	2.6	60
258	Fluctuations in ion pairs and their stabilities in proteins. Proteins: Structure, Function and Bioinformatics, 2001, 43, 433-454.	2.6	48
259	Structured disorder and conformational selection. Proteins: Structure, Function and Bioinformatics, 2001, 44, 418-427.	2.6	184
260	Molecular dynamics simulation of Escherichia coli dihydrofolate reductase and its protein fragments: Relative stabilities in experiment and simulations. Protein Science, 2001, 10, 135-148.	7.6	19
261	MUSTA - A General, Efficient, Automated Method for Multiple Structure Alignment and Detection of Common Motifs: Application to Proteins. Journal of Computational Biology, 2001, 8, 93-121.	1.6	62
262	Conservation of polar residues as hot spots at protein interfaces. Proteins: Structure, Function and Bioinformatics, 2000, 39, 331-342.	2.6	253
263	Fluctuations between stabilizing and destabilizing electrostatic contributions of ion pairs in conformers of the c-Myc-Max leucine zipper. Proteins: Structure, Function and Bioinformatics, 2000, 41, 485-497.	2.6	26
264	Transition-state Ensemble in Enzyme Catalysis: Possibility, Reality, or Necessity?. Journal of Theoretical Biology, 2000, 203, 383-397.	1.7	73
265	Homology modeling and molecular dynamics simulations of lymphotactin. Protein Science, 2000, 9, 2192-2199.	7.6	2
266	Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins: Structure, Function and Bioinformatics, 2000, 38, 368-383.	2.6	140
267	A Systematic Study of the Vibrational Free Energies of Polypeptides in Folded and Random States. Biophysical Journal, 2000, 79, 2739-2753.	0.5	24
268	Contribution of Salt Bridges Toward Protein Thermostability. Journal of Biomolecular Structure and Dynamics, 2000, 17, 79-85.	3.5	70
269	Folding and binding cascades: Dynamic landscapes and population shifts. Protein Science, 2000, 9, 10-19.	7.6	521
270	Conservation of polar residues as hot spots at protein interfaces. Proteins: Structure, Function and Bioinformatics, 2000, 39, 331-342.	2.6	3

#	Article	IF	CITATIONS
271	Folding and binding cascades: Shifts in energy landscapes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9970-9972.	7.1	337
272	Folding funnels, binding funnels, and protein function. Protein Science, 1999, 8, 1181-1190.	7.6	634
273	Distinguishing between sequential and nonsequentially folded proteins: Implications for folding and misfolding. Protein Science, 1999, 8, 1591-1604.	7.6	23
274	Folding funnels and conformational transitions via hinge-bending motions. Cell Biochemistry and Biophysics, 1999, 31, 141-164.	1.8	85
275	Flexible structural comparison allowing hinge-bending, swiveling motions. , 1999, 34, 232-254.		30
276	Examination of shape complementarity in docking ofUnbound proteins. , 1999, 36, 307-317.		118
277	Explicit and implicit water simulations of a ?-hairpin peptide. , 1999, 37, 73-87.		20
278	Folding funnels and binding mechanisms. Protein Engineering, Design and Selection, 1999, 12, 713-720.	2.1	534
279	Explicit and implicit water simulations of a \hat{l}^2 -hairpin peptide. , 1999, 37, 73.		1
280	Small Molecule Recognition: Solid Angles Surface Representation and Molecular Shape Complementarity. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 223-236.	1.1	17
281	Efficient Computational Algorithms for Docking and for Generating and Matching a Library of Functional Epitopes II. Computer Vision-Based Techniques for the Generation and Utilization of Functional Epitopes. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 261-269.	1.1	3
282	Efficient Computational Algorithms for Docking and for Generating and Matching a Library of Functional Epitopes I. Rigid and Flexible Hinge-Bending Docking Algorithms. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 249-259.	1.1	5
283	Electrostatics, allostery, and activity of the yeast chorismate mutase. , 1998, 31, 445-452.		10
284	A set of van der Waals and coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Proteins: Structure, Function and Bioinformatics, 1998, 32, 111-127.	2.6	147
285	Flexible docking allowing induced fit in proteins: Insights from an open to closed conformational isomers. Proteins: Structure, Function and Bioinformatics, 1998, 32, 159-174.	2.6	110
286	Mechanism and evolution of protein dimerization. Protein Science, 1998, 7, 533-544.	7.6	84
287	A set of van der Waals and coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. , 1998, 32, 111.		2
288	A set of van der Waals and coulombic radii of protein atoms for molecular and solventâ€accessible surface calculation, packing evaluation, and docking. Proteins: Structure, Function and Bioinformatics, 1998, 32, 111-127.	2.6	1

#	Article	IF	CITATIONS
289	Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Science, 1997, 6, 24-42.	7.6	84
290	Studies of proteinâ€protein interfaces: A statistical analysis of the hydrophobic effect. Protein Science, 1997, 6, 53-64.	7.6	361
291	Hydrophobic folding units at proteinâ€protein interfaces: Implications to protein folding and to proteinâ€protein association. Protein Science, 1997, 6, 1426-1437.	7.6	115
292	Structural motifs at proteinâ€protein interfaces: Protein cores versus twoâ€state and threeâ€state model complexes. Protein Science, 1997, 6, 1793-1805.	7.6	78
293	Protein-Protein Interfaces: Architectures and Interactions in Protein-Protein Interfaces and in Protein Cores. Their Similarities and Differences. Critical Reviews in Biochemistry and Molecular Biology, 1996, 31, 127-152.	5.2	110
294	A disulphide-reinforced structural scaffold shared by small proteins with diverse functions. Nature Structural Biology, 1995, 2, 835-837.	9.7	32
295	A 3D sequence-independent representation of the protein data bank. Protein Engineering, Design and Selection, 1995, 8, 981-997.	2.1	49
296	An automated computer vision and roboticsbased technique for 3-D flexible biomolecular docking and matching. Bioinformatics, 1995, 11, 87-99.	4.1	16
297	Threeâ€dimensional, sequence orderâ€independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: Potential implications to evolution and to protein folding. Protein Science, 1994, 3, 769-778.	7.6	90
298	Molecular surface representations by sparse critical points. Proteins: Structure, Function and Bioinformatics, 1994, 18, 94-101.	2.6	104
299	Shape complementarity at protein-protein interfaces. Biopolymers, 1994, 34, 933-940.	2.4	991
300	Surface motifs by a computer vision technique: Searches, detection, and implications for protein-ligand recognition. Proteins: Structure, Function and Bioinformatics, 1993, 16, 278-292.	2.6	72
301	A computer vision based technique for 3-D sequence-independent structural comparison of proteins. Protein Engineering, Design and Selection, 1993, 6, 279-287.	2.1	125
302	Spatial, Sequence-Order-Independent Structural Comparison of α/β Proteins: Evolutionaiy Implications. Journal of Biomolecular Structure and Dynamics, 1993, 11, 367-380.	3.5	5
303	An Efficient Automated Computer Vision Based Technique for Detection of Three Dimensional Structural Motifs in Proteins. Journal of Biomolecular Structure and Dynamics, 1992, 9, 769-789.	3.5	75
304	Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10495-10499.	7.1	263
305	Long range and symmetry considerations in the DNA. DNA Sequence, 1991, 2, 69-79.	0.7	0
306	General Nearest Neighbor Preferences in G/C Oligomers Interrupted by A/T: Correlation with DNA Structure. Journal of Biomolecular Structure and Dynamics, 1990, 8, 399-411.	3.5	7

#	Article	IF	CITATIONS
307	Conserved Signals Around the 5′ Splice Sites in Eukaryotic Nuclear Precursor mRNAs: C-Runs are Frequent in the Introns and C in the Exons Near Both 5′ and 3′ Splice Sites. Journal of Biomolecular Structure and Dynamics, 1989, 6, 985-1000.	3.5	21
308	Strong Patterns in Homooligomer Tracts Occurrences in Non-Coding and in Potential Regulatory Sites in Eukaryotic Genomes. Journal of Biomolecular Structure and Dynamics, 1989, 7, 707-722.	3.5	8
309	Conserved Putative Signals in 3′ Intron Junctions in Rodents. Journal of Biomolecular Structure and Dynamics, 1987, 4, 1051-1064.	3.5	4
310	Hydrophobic Interactions in the Major Groove Can Influence DNA Local Structure. Journal of Biomolecular Structure and Dynamics, 1986, 4, 41-48.	3.5	42
311	TGTC, G clustering and Other Signals Near Non-Mammalian Vertebrate mRNA 3′ Termini: Some Implications. Journal of Biomolecular Structure and Dynamics, 1986, 3, 1145-1153.	3.5	7
312	Bacteriophage λ <i>int</i> Protein May Recognize Structural Features of the Attachment Sites. Journal of Biomolecular Structure and Dynamics, 1986, 3, 1133-1144.	3.5	3
313	The Predicted Presence of Large Helical Structural Variation in YeastHIS4Upstream Region is Correlated with General Amino Acid Control on theCYC1Gene. Journal of Biomolecular Structure and Dynamics, 1985, 3, 349-361.	3.5	2
314	Temperature-Dependent Molecular Adaptation Features in Proteins. , 0, , 75-85.		6