Wenming Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278592/publications.pdf

Version: 2024-02-01

159585 114465 4,083 70 30 63 citations h-index g-index papers 71 71 71 6406 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Free-Standing <i>T</i> -Nb ₂ O ₅ /Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-lon Intercalation Pseudocapacitor. ACS Nano, 2015, 9, 11200-11208.	14.6	349
2	Kinetically-enhanced polysulfide redox reactions by Nb ₂ O ₅ nanocrystals for high-rate lithium–sulfur battery. Energy and Environmental Science, 2016, 9, 3230-3239.	30.8	328
3	High Efficiency Immobilization of Sulfur on Nitrogen-Enriched Mesoporous Carbons for Li–S Batteries. ACS Applied Materials & Interfaces, 2013, 5, 5630-5638.	8.0	305
4	Nitrogen Doping Effects on the Physical and Chemical Properties of Mesoporous Carbons. Journal of Physical Chemistry C, 2013, 117, 8318-8328.	3.1	237
5	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943.	6.7	210
6	A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. Journal of Materials Chemistry A, 2013, 1, 13283.	10.3	189
7	High-power and high-energy asymmetric supercapacitors based on Li ⁺ -intercalation into a T-Nb ₂ O ₅ /graphene pseudocapacitive electrode. Journal of Materials Chemistry A, 2014, 2, 17962-17970.	10.3	15 3
8	Nitrogen-Rich Mesoporous Carbons: Highly Efficient, Regenerable Metal-Free Catalysts for Low-Temperature Oxidation of H ₂ S. ACS Catalysis, 2013, 3, 862-870.	11.2	150
9	Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres. Journal of Colloid and Interface Science, 2016, 462, 200-207.	9.4	131
10	Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors. Scientific Reports, 2016, 6, 21177.	3.3	123
11	KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC. Energy & Samp; Fuels, 2006, 20, 1680-1684.	5.1	120
12	Direct Capture of Low-Concentration CO ₂ on Mesoporous Carbon-Supported Solid Amine Adsorbents at Ambient Temperature. Industrial & Engineering Chemistry Research, 2015, 54, 5319-5327.	3.7	113
13	Macroscopic and Mechanically Robust Hollow Carbon Spheres with Superior Oil Adsorption and Lightâ€toâ€Heat Evaporation Properties. Advanced Functional Materials, 2016, 26, 5368-5375.	14.9	108
14	Sulfur film sandwiched between few-layered MoS ₂ electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 5899-5909.	10.3	95
15	Removal of formaldehyde at low concentration using various activated carbon fibers. Journal of Applied Polymer Science, 2007, 106, 2151-2157.	2.6	92
16	MnO _{<i>x</i>} –CeO ₂ /Activated Carbon Honeycomb Catalyst for Selective Catalytic Reduction of NO with NH ₃ at Low Temperatures. Industrial & Engineering Chemistry Research, 2012, 51, 11667-11673.	3.7	92
17	Effect of SO ₂ on Activated Carbon Honeycomb Supported CeO ₂ –MnO _{<i>x</i>} Catalyst for NO Removal at Low Temperature. Industrial & & & & & & & & & & & & & & & & & & &	3.7	76
18	Role of Pore Structure of Activated Carbon Fibers in the Catalytic Oxidation of H ₂ S. Industrial & Engineering Chemistry Research, 2010, 49, 3152-3159.	3.7	75

#	Article	IF	CITATIONS
19	Application of polyethylenimineâ€impregnated solid adsorbents for direct capture of lowâ€concentration CO ₂ . AICHE Journal, 2015, 61, 972-980.	3.6	73
20	Rational Design of High-Surface-Area Carbon Nanotube/Microporous Carbon Core–Shell Nanocomposites for Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 4817-4825.	8.0	62
21	Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes. Journal of Colloid and Interface Science, 2017, 488, 207-217.	9.4	62
22	Structural features of polyacrylonitrile-based carbon fibers. Journal of Materials Science, 2012, 47, 919-928.	3.7	54
23	Ion Transport Behavior in Triblock Copolymer-Templated Ordered Mesoporous Carbons with Different Pore Symmetries. Journal of Physical Chemistry C, 2010, 114, 18745-18751.	3.1	53
24	Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. Journal of Solid State Electrochemistry, 2011, 15, 413-419.	2.5	47
25	Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide. Journal of Colloid and Interface Science, 2020, 562, 193-203.	9.4	46
26	Free-standing carbon nanofiber fabrics for high performance flexible supercapacitor. Journal of Colloid and Interface Science, 2018, 531, 513-522.	9.4	45
27	Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements. Langmuir, 2016, 32, 8583-8592.	3.5	35
28	Synthesis and characterization of high-softening-point methylene-bridged pitches by visible light irradiation assisted free-radical bromination. Carbon, 2015, 95, 780-788.	10.3	34
29	Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2. Journal of Colloid and Interface Science, 2019, 534, 72-80.	9.4	34
30	Hard-templating synthesis of mesoporous carbon spheres with controlled particle size and mesoporous structure for enzyme immobilization. Materials Chemistry and Physics, 2011, 129, 1035-1041.	4.0	33
31	Flexible carbon nanofiber sponges for highly efficient and recyclable oil absorption. RSC Advances, 2015, 5, 70025-70031.	3.6	33
32	A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H ₂ S Oxidation at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2477-2484.	8.0	32
33	Controllable synthesis of hierarchical mesoporous/microporous nitrogen-rich polymer networks for CO ₂ and Cr(<scp>vi</scp>) ion adsorption. RSC Advances, 2014, 4, 16224-16232.	3.6	30
34	Catalytic Graphitization of Anthracite as an Anode for Lithium-Ion Batteries. Energy & Energy	5.1	30
35	Organic Amine-Mediated Synthesis of Polymer and Carbon Microspheres: Mechanism Insight and Energy-Related Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4851-4861.	8.0	29
36	Three-dimensional Mn–Cu–Ce ternary mixed oxide networks prepared by polymer-assisted deposition for HCHO catalytic oxidation. Catalysis Science and Technology, 2018, 8, 2740-2749.	4.1	29

#	Article	IF	CITATIONS
37	Controllable Nitrogen Doping of High-Surface-Area Microporous Carbons Synthesized from an Organic–Inorganic Sol–Gel Approach for Li–S Cathodes. ACS Applied Materials & Interfaces, 2015, 7, 21188-21197.	8.0	28
38	Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal. Journal of Colloid and Interface Science, 2018, 510, 77-85.	9.4	22
39	Large-scale synthesis of mesoporous carbon microspheres with controllable structure and nitrogen doping using a spray drying method. RSC Advances, 2014, 4, 62662-62665.	3.6	20
40	Scalable preparation of nitrogen-enriched carbon microspheres for efficient CO ₂ capture. RSC Advances, 2014, 4, 61456-61464.	3.6	19
41	Highly efficient removal of bulky tannic acid by millimeterâ€sized nitrogenâ€doped mesoporous carbon beads. AICHE Journal, 2017, 63, 3016-3025.	3.6	19
42	Kinetics and Mechanism Study of Low-Temperature Selective Catalytic Reduction of NO with Urea Supported on Pitch-Based Spherical Activated Carbon. Industrial & Engineering Chemistry Research, 2011, 50, 6017-6027.	3.7	18
43	Insights into the promotion role of phosphorus doping on carbon as a metal-free catalyst for low-temperature selective catalytic reduction of NO with NH ₃ . RSC Advances, 2020, 10, 12908-12919.	3.6	18
44	Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. Journal of Solid State Electrochemistry, 2014, 18, 2673-2682.	2.5	17
45	Catalytic effect of praseodymium oxide additive on the microstructure and electrical property of graphite anode. Carbon, 2015, 95, 940-948.	10.3	16
46	Flexible Ru/Graphene Aerogel with Switchable Surface Chemistry: Highly Efficient Catalyst for Roomâ€Temperature CO Oxidation. Advanced Materials Interfaces, 2016, 3, 1500711.	3.7	16
47	Low-Temperature Selective Catalytic Reduction of NO _{<i>×</i>} with NH ₃ over Mn–Ce Composites Synthesized by Polymer-Assisted Deposition. ACS Omega, 2021, 6, 12801-12812.	3.5	15
48	Meso-channel Development in Graphitic Carbon Nanofibers with Various Structures. Chemistry of Materials, 2011, 23, 4141-4148.	6.7	14
49	Facile Fabrication of Fe ₂ O ₃ -Decorated Carbon Matrixes with a Multidimensional Structure as Anodes for Lithium-Ion Batteries. Energy &	5.1	14
50	Flexible Pt-Promoted Graphene Aerogel Monolith: Versatile Catalyst for Room-Temperature Removal of Carbon Monoxide, Formaldehyde, and Ethylene. Industrial & Engineering Chemistry Research, 2018, 57, 14544-14550.	3.7	11
51	Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3. Materials, 2020, 13, 475.	2.9	11
52	Highly effective utilization of ethylene tar for mesophase development via a molecular fractionation process. RSC Advances, 2016, 6, 796-804.	3.6	10
53	Carbon Nanotube@Microporous Carbon Core–Shell Nanowires for NO Oxidation: The Multiple Roles of Micropore Structure. Industrial & Engineering Chemistry Research, 2018, 57, 12061-12070.	3.7	10
54	Significantly enhanced rate capability in supercapacitors using carbide-derived carbons electrode with superior microstructure. Journal of Solid State Electrochemistry, 2012, 16, 1263-1270.	2.5	9

#	Article	IF	CITATIONS
55	Shapeâ€Customizable Macroâ€∤Microporous Carbon Monoliths for Structureâ€ŧoâ€Functionality CO _{2< sub> Adsorption and Novel Electrical Regeneration. Advanced Materials Technologies, 2017, 2, 1700088.}	5.8	9
56	Low-Temperature Selective Catalytic Reduction of NO _{<i>x</i>} with Urea Supported on Carbon Xerogels. Industrial & Engineering Chemistry Research, 2018, 57, 6842-6852.	3.7	9
57	Insight into the mechanism of boron-doping of carbon aerogel for enhancing the activity of low-temperature selective catalytic reduction of NO with NH ₃ . Catalysis Science and Technology, 2021, 11, 2057-2072.	4.1	9
58	Low-Temperature Selective Catalytic Reduction of NO with Urea Supported on Pitch-Based Spherical Activated Carbon. Industrial & Engineering Chemistry Research, 2010, 49, 6317-6322.	3.7	8
59	Construction of mesoporous carbon microsphere/polyaniline composites as high performance pseudocapacitive electrodes. Journal of Colloid and Interface Science, 2020, 573, 45-54.	9.4	8
60	Controllable Synthesis of Highly Graphitizable Pitches from 1-Methylnaphthalene via Closed-System Dehydrobromination. Energy & Dehydrobromination. Energy & Dehydrobromination. Energy & Dehydrobromination.	5.1	7
61	Nanoarchitectured MnO ₂ Confined to Mesoporous Carbon Microspheres as Bifunctional Electrodes for High-Performance Supercapacitors and Lithium-Ion Capacitors. Industrial & Engineering Chemistry Research, 2022, 61, 1748-1760.	3.7	7
62	Design of a dual-bed catalyst system with microporous carbons and urea-supported mesoporous carbons for highly effective removal of $NO < sub > x < / sub > at room temperature$. RSC Advances, 2016, 6, 27272-27281.	3.6	6
63	Fabrication of monolithic carbon nanofiber/carbon composites. RSC Advances, 2016, 6, 6443-6450.	3.6	5
64	Promotion of Phosphorus on Carbon Supports for MnO _x â^'CeO ₂ Catalysts in Lowâ€Temperature NH ₃ â^'SCR with Enhanced SO ₂ Resistance. ChemistrySelect, 2021, 6, 3642-3655.	1.5	5
65	Ammonia-Free Selective Catalytic Reduction of NO at Low Temperature on Melamine Impregnated MnO _{<i>x</i><fsub>–CeO₂/Carbon Aerogels. Industrial & mp; Engineering Chemistry Research, 2021, 60, 13233-13242.</fsub>}	3.7	5
66	Metal chloride-assisted synthesis of hierarchical porous carbons for high-rate-performance supercapacitor. RSC Advances, 2017, 7, 26650-26657.	3.6	4
67	Controllable synthesis of mesoporous carbon microspheres with renewable water glass as a template for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 554, 103-112.	9.4	4
68	Dimensional control of tubular-type carbon nanofibers via pyrolytic carbon coating. Journal of Materials Science, 2017, 52, 5165-5178.	3.7	2
69	A simple route to constructing rGO wrapped Fe2O3 cubes as a high-performance anode material for lithium-ion batteries. Ionics, 2022, 28, 3165-3176.	2.4	1
70	A model to predict property of additives modified carbon material high temperature binder with RBF neural networks. , 2008, , .		0