List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid constructed wetlands integrated with microbial fuel cells and reactive bed filter for wastewater treatment and bioelectricity generation. Environmental Science and Pollution Research, 2022, 29, 22223-22236.	5.3	8
2	Distribution of heavy metals in Phragmites australis growing in constructed treatment wetlands and comparison with natural unpolluted sites. Ecological Engineering, 2022, 175, 106505.	3.6	8
3	The Historical Development of Constructed Wetlands for Wastewater Treatment. Land, 2022, 11, 174.	2.9	42
4	Enhancement of denitrification in biofilters by immobilized biochar under low-temperature stress. Bioresource Technology, 2022, 347, 126664.	9.6	31
5	Application of arbuscular mycorrhizal fungi for pharmaceuticals and personal care productions removal in constructed wetlands with different substrate. Journal of Cleaner Production, 2022, 339, 130760.	9.3	14
6	Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	495
7	Impact of microplastics on the treatment performance of constructed wetlands: Based on substrate characteristics and microbial activities. Water Research, 2022, 217, 118430.	11.3	31
8	A review of technologies for closing the P loop in agriculture runoff: Contributing to the transition towards a circular economy. Ecological Engineering, 2022, 177, 106571.	3.6	15
9	Meta-analysis of the removal of trace organic contaminants from constructed wetlands: Conditions, parameters, and mechanisms. Ecological Engineering, 2022, 178, 106596.	3.6	6
10	The combination sequence effect on nitrogen removal pathway in hybrid constructed wetlands treating raw sewage from multiple perspectives. Science of the Total Environment, 2022, 833, 155200.	8.0	7
11	Immobilization of chromium enhanced by arbuscular mycorrhizal fungi in semi-aquatic habitats with biochar addition. Journal of Hazardous Materials, 2022, 439, 129562.	12.4	15
12	Floating treatment wetlands integrated with microbial fuel cell for the treatment of urban wastewaters and bioenergy generation. Science of the Total Environment, 2021, 766, 142474.	8.0	40
13	Employ of arbuscular mycorrhizal fungi for pharmaceuticals ibuprofen and diclofenac removal in mesocosm-scale constructed wetlands. Journal of Hazardous Materials, 2021, 409, 124524.	12.4	30
14	Phosphorus removal in a pilot scale free water surface constructed wetland: hydraulic retention time, seasonality and standing stock evaluation. Chemosphere, 2021, 266, 128939.	8.2	19
15	Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis. Chemosphere, 2021, 262, 128366.	8.2	67
16	Long-term performance of nutrient removal in an integrated constructed wetland. Science of the Total Environment, 2021, 779, 146268.	8.0	16
17	Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Science of the Total Environment, 2021, 777, 146044.	8.0	76
18	Arbuscular mycorrhizal fungi modulate the chromium distribution and bioavailability in semi-aquatic habitats. Chemical Engineering Journal, 2021, 420, 129925.	12.7	24

#	Article	IF	CITATIONS
19	Fate of antifungal drugs climbazole and fluconazole in constructed wetlands - Diastereoselective transformation indicates process conditions. Chemical Engineering Journal, 2021, 421, 127783.	12.7	5
20	Arbuscular mycorrhizal symbiosis in constructed wetlands with different substrates: Effects on the phytoremediation of ibuprofen and diclofenac. Journal of Environmental Management, 2021, 296, 113217.	7.8	11
21	Green walls: A form of constructed wetland in green buildings. Ecological Engineering, 2021, 169, 106321.	3.6	27
22	Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 2021, 169, 106318.	3.6	124
23	Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands: A field-scale study in a frost-free area. Science of the Total Environment, 2021, 799, 149301.	8.0	22
24	Species traits and decomposability predict water quality changes during litter submergence. Science of the Total Environment, 2020, 712, 135581.	8.0	4
25	Nanoplastics Disturb Nitrogen Removal in Constructed Wetlands: Responses of Microbes and Macrophytes. Environmental Science & amp; Technology, 2020, 54, 14007-14016.	10.0	128
26	Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress. Environmental Research, 2020, 191, 110203.	7.5	39
27	Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting – Biomass and load matter the most. Ecological Engineering, 2020, 155, 105962.	3.6	45
28	Can subsurface flow constructed wetlands be applied in cold climate regions? A review of the current knowledge. Ecological Engineering, 2020, 157, 105992.	3.6	28
29	Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions. Environmental Science and Ecotechnology, 2020, 4, 100063.	13.5	48
30	Constructed wetlands with subsurface flow for nitrogen removal from tile drainage. Ecological Engineering, 2020, 155, 105943.	3.6	23
31	Arbuscular mycorrhizal fungi colonization and physiological functions toward wetland plants under different water regimes. Science of the Total Environment, 2020, 716, 137040.	8.0	25
32	Constructed wetlands for landfill leachate treatment: A review. Ecological Engineering, 2020, 146, 105725.	3.6	88
33	Effects of loading rates and plant species on sludge characteristics in earthworm assistant sludge treatment wetlands. Science of the Total Environment, 2020, 730, 139142.	8.0	11
34	Field Study VI: The Effect of Loading Strategies on Removal Efficiencies of a Hybrid Constructed Wetland Treating Mixed Domestic and Agro-Industrial Wastewaters. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 395-409.	0.5	0
35	Greenhouse Gases Formation and Emission. , 2019, , 329-333.		8

Constructed Wetlands for Wastewater Treatment. , 2019, , 14-21.

#	Article	IF	CITATIONS
37	Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years?. Chemical Engineering Journal, 2019, 378, 122117.	12.7	49
38	Treatment wetlands aeration efficiency: A review. Ecological Engineering, 2019, 136, 62-67.	3.6	24
39	Critical Review: Biogeochemical Networking of Iron in Constructed Wetlands for Wastewater Treatment. Environmental Science & Technology, 2019, 53, 7930-7944.	10.0	90
40	Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 2019, 182, 109362.	6.0	250
41	Critical Review: Biogeochemical Networking of Iron, Is It Important in Constructed Wetlands for Wastewater Treatment?. Environmental Science & Technology, 2019, , .	10.0	3
42	Effect of earthworms and plants on the efficiency of verticalÂflow systems treating university wastewater. Environmental Science and Pollution Research, 2019, 26, 10354-10362.	5.3	19
43	Present restrictions of sewage sludge application in agriculture within the European Union. Soil and Water Research, 2019, 14, 104-120.	1.7	144
44	Comprehensive metagenomic analysis reveals the effects of silver nanoparticles on nitrogen transformation in constructed wetlands. Chemical Engineering Journal, 2019, 358, 1552-1560.	12.7	57
45	Capacity of various single-stage constructed wetlands to treat domestic sewage under optimal temperature in Guangzhou City, South China. Ecological Engineering, 2018, 115, 35-44.	3.6	38
46	Impacts of various filtration media on wastewater treatment and bioelectric production in up-flow constructed wetland combined with microbial fuel cell (UCW-MFC). Ecological Engineering, 2018, 117, 120-132.	3.6	100
47	Rethinking Intensification of Constructed Wetlands as a Green Eco-Technology for Wastewater Treatment. Environmental Science & Technology, 2018, 52, 1693-1694.	10.0	69
48	Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch. Ecological Engineering, 2018, 118, 97-103.	3.6	73
49	Translocation, accumulation and bioindication of trace elements in wetland plants. Science of the Total Environment, 2018, 631-632, 252-261.	8.0	93
50	Carbon sequestration and nutrient accumulation in floodplain and depressional wetlands. Ecological Engineering, 2018, 114, 137-145.	3.6	42
51	Does clogging affect long-term removal of organics and suspended solids in gravel-based horizontal subsurface flow constructed wetlands?. Chemical Engineering Journal, 2018, 331, 663-674.	12.7	57
52	Evaluation of macrophytes suitable for agriculture drainage treatment with respect to their carbon sequestration potential. Ecological Engineering, 2018, 124, 31-37.	3.6	4
53	Do Laboratory Scale Experiments Improve Constructed Wetland Treatment Technology?. Environmental Science & Technology, 2018, 52, 12956-12957.	10.0	26
54	Assessment of runoff nitrogen load reduction measures for agricultural catchments. Open Geosciences, 2018, 10, 403-412.	1.7	5

#	Article	IF	CITATIONS
55	Occurrence and removal of ibuprofen and its metabolites in full-scale constructed wetlands treating municipal wastewater. Ecological Engineering, 2018, 120, 1-5.	3.6	39
56	Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations. Science of the Total Environment, 2018, 639, 640-647.	8.0	64
57	Treatment of a small stream impacted by agricultural drainage in a semi-constructed wetland. Science of the Total Environment, 2018, 643, 52-62.	8.0	23
58	Constructed Wetlands for Water Quality Regulation. , 2018, , 1313-1320.		1
59	A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agricultural and Forest Meteorology, 2017, 236, 175-193.	4.8	157
60	Seed bank of Littorella uniflora (L.) Asch. in the Czech Republic, Central Europe: does burial depth and sediment type influence seed germination?. Hydrobiologia, 2017, 794, 347-358.	2.0	6
61	The Use of Constructed Wetlands for Nitrogen Removal from Agricultural Drainage: a Review. Scientia Agriculturae Bohemica, 2017, 48, 82-91.	0.3	35
62	Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration, 2017, 181, 22-30.	3.2	48
63	Effects of tidal operation on pilot-scale horizontal subsurface flow constructed wetland treating sulfate rich wastewater contaminated by chlorinated hydrocarbons. Environmental Science and Pollution Research, 2017, 24, 1042-1050.	5.3	6
64	Dynamics of chloroacetanilide herbicides in various types of mesocosm wetlands. Science of the Total Environment, 2017, 577, 386-394.	8.0	30
65	Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic – the first year of monitoring. Ecological Engineering, 2017, 98, 354-364.	3.6	139
66	Treatment of water contaminated by volatile organic compounds in hydroponic root mats. Ecological Engineering, 2017, 98, 339-345.	3.6	7
67	Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of HornÃ-BeÅ™kovice, Czech Republic. Water (Switzerland), 2017, 9, 218.	2.7	28
68	Removal Efficiency of Constructed Wetland for Treatment of Agricultural Wastewaters. Chemistry Journal of Moldova, 2017, 12, 45-52.	0.6	11
69	Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Science of the Total Environment, 2016, 566-567, 1660-1669.	8.0	173
70	Preface: Wetlands biodiversity and processes—tools for conservation and management. Hydrobiologia, 2016, 774, 1-5.	2.0	9
71	Sulfate removal and sulfur transformation in constructed wetlands: The roles of filling material and plant biomass. Water Research, 2016, 102, 572-581.	11.3	90
72	Hydroponic root mats for wastewater treatment—a review. Environmental Science and Pollution Research, 2016, 23, 15911-15928.	5.3	129

#	Article	IF	CITATIONS
73	Treatment of Chlorinated Benzenes in Different Pilot Scale Constructed Wetlands. , 2016, , 225-235.		0
74	Removal of saccharin from municipal sewage: The first results from constructed wetlands. Chemical Engineering Journal, 2016, 306, 1067-1070.	12.7	11
75	New nitrogen removal pathways in a full-scale hybrid constructed wetland proposed from high-throughput sequencing and isotopic tracing results. Ecological Engineering, 2016, 97, 434-443.	3.6	40
76	Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chemical Engineering Journal, 2016, 290, 232-242.	12.7	161
77	Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Science of the Total Environment, 2016, 544, 495-498.	8.0	94
78	Preliminary investigation on the effect of earthworm and vegetation for sludge treatment in sludge treatment in sludge treatment reed beds system. Environmental Science and Pollution Research, 2016, 23, 11957-11963.	5.3	37
79	Transformation of Chloroform in Constructed Wetlands. , 2016, , 237-245.		0
80	Constructed Wetlands for Water Quality Regulation. , 2016, , 1-8.		1
81	Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Science of the Total Environment, 2015, 536, 625-631.	8.0	71
82	Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecological Engineering, 2015, 79, 94-99.	3.6	37
83	Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality. Water Science and Technology, 2015, 71, 268-276.	2.5	24
84	Transformation of Chloroform in Model Treatment Wetlands: From Mass Balance to Microbial Analysis. Environmental Science & Technology, 2015, 49, 6198-6205.	10.0	31
85	Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecological Engineering, 2015, 84, 202-208.	3.6	75
86	Comment on "Enhanced Long-Term Nitrogen Removal and Its Quantitative Molecular Mechanism in Tidal Flow Constructed Wetlands― Environmental Science & Technology, 2015, 49, 11241-11242.	10.0	9
87	Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment. Ecological Engineering, 2015, 84, 38-45.	3.6	96
88	Seasonal growth pattern of Phalaris arundinacea in constructed wetlands with horizontal subsurface flow. Ecological Engineering, 2015, 80, 62-68.	3.6	20
89	The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environment International, 2015, 75, 11-20.	10.0	364
90	Nitrogen standing stock in Phragmites australis growing in constructed wetlands—Do we evaluate it correctly?. Ecological Engineering, 2015, 74, 286-289.	3.6	9

JAN VYMAZAL

#	Article	IF	CITATIONS
91	Development of constructed wetlands inÂperformance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research, 2014, 57, 40-55.	11.3	489
92	Constructed wetlands for boron removal: A review. Ecological Engineering, 2014, 64, 350-359.	3.6	77
93	Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent. Water Research, 2014, 59, 1-10.	11.3	59
94	Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands. Bioresource Technology, 2014, 157, 341-345.	9.6	81
95	Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 2014, 73, 724-751.	3.6	460
96	Long term treatment performance of constructed wetlands for wastewater treatment in mountain areas: Four case studies from the Czech Republic. Ecological Engineering, 2014, 71, 578-583.	3.6	26
97	Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment. Water Research, 2014, 63, 158-167.	11.3	96
98	Competition of Phragmites australis and Phalaris arundinacea in constructed wetlands with horizontal subsurface flow – does it affect BOD5, COD and TSS removal?. Ecological Engineering, 2014, 73, 53-57.	3.6	21
99	LONG-TERM TREATMENT EFFICIENCY OF A HORIZONTAL SUBSURFACE FLOW CONSTRUCTED WETLAND AT JIMLIKOV, CZECH REPUBLIC. Environmental Engineering and Management Journal, 2014, 13, 73-80.	0.6	6
100	Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: A review. Ecological Engineering, 2013, 53, 106-114.	3.6	26
101	Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 2013, 61, 582-592.	3.6	344
102	The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Research, 2013, 47, 4795-4811.	11.3	405
103	Iron and manganese in sediments of constructed wetlands with horizontal subsurface flow treating municipal sewage. Ecological Engineering, 2013, 50, 69-75.	3.6	27
104	Plants in constructed, restored and created wetlands. Ecological Engineering, 2013, 61, 501-504.	3.6	30
105	Vegetation development in subsurface flow constructed wetlands in the Czech Republic. Ecological Engineering, 2013, 61, 575-581.	3.6	27
106	Reconstruction of a constructed wetland with horizontal subsurface flow after 18 years of operation. Water Science and Technology, 2013, 68, 1195-1202.	2.5	4
107	Restoration of areas affected by mining. Ecological Engineering, 2012, 43, 1-4.	3.6	14
108	Removal of alkali metals and their sequestration in plants in constructed wetlands treating municipal sewage. Hydrobiologia, 2012, 692, 131-143.	2.0	19

#	Article	IF	CITATIONS
109	Heavy metals inPhalaris arundinaceagrowing in a constructed wetland treating municipal sewage. International Journal of Environmental Analytical Chemistry, 2011, 91, 753-767.	3.3	6
110	Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environmental Science & Technology, 2011, 45, 61-69.	10.0	850
111	Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 2011, 674, 133-156.	2.0	501
112	Long-term performance of constructed wetlands with horizontal sub-surface flow: Ten case studies from the Czech Republic. Ecological Engineering, 2011, 37, 54-63.	3.6	91
113	A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation. Ecological Engineering, 2011, 37, 90-98.	3.6	131
114	Enhancing ecosystem services on the landscape with created, constructed and restored wetlands. Ecological Engineering, 2011, 37, 1-5.	3.6	42
115	Heavy metals in sediments from constructed wetlands treating municipal wastewater. Biogeochemistry, 2010, 101, 335-356.	3.5	31
116	Can multiple harvest of aboveground biomass enhance removal of trace elements in constructed wetlands receiving municipal sewage?. Ecological Engineering, 2010, 36, 939-945.	3.6	46
117	Nutrient Accumulation by Phragmites australis and Phalaris arundinacea Growing in Two Constructed Wetlands for Wastewater Treatment. , 2010, , 133-149.		2
118	Constructed Wetlands in the Czech Republic: 20 Years of Experience. , 2010, , 169-178.		1
119	Constructed Wetlands for Wastewater Treatment. Water (Switzerland), 2010, 2, 530-549.	2.7	588
120	Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Science of the Total Environment, 2009, 407, 3911-3922.	8.0	229
121	Horizontal sub-surface flow constructed wetlands OndÅ™ejov and Spálené PoÅ™ÃÄÃ-in the Czech Republic á 15 years of operation. Desalination, 2009, 246, 226-237.	쀓 8.2	23
122	Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecological Engineering, 2009, 35, 303-309.	3.6	83
123	The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 2009, 35, 1-17.	3.6	474
124	Removal of nitrogen in constructed wetlands with horizontal sub-sureface flow: a review. Wetlands, 2009, 29, 1114-1124.	1.5	42
125	Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environmental Pollution, 2009, 157, 1186-1194.	7.5	128
126	Constructed wetlands with horizontal subsurface flow in the Czech Republic: Two long-term case studies. Desalination and Water Treatment, 2009, 4, 40-44.	1.0	7

JAN VYMAZAL

#	Article	IF	CITATIONS
127	Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. Environmental Pollution, 2008, , .	0.4	214
128	Nitrogen and phosphorus standing stock inPhalaris arundinaceaandPhragmites australisin a constructed treatment wetland: 3-year study. Archives of Agronomy and Soil Science, 2008, 54, 297-308.	2.6	19
129	Sulfur Cycling in Constructed Wetlands. , 2008, , 329-344.		10
130	Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 2007, 380, 48-65.	8.0	2,083
131	Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the Total Environment, 2007, 380, 154-162.	8.0	111
132	Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering, 2005, 25, 606-621.	3.6	146
133	Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 2005, 25, 478-490.	3.6	678
134	Removal of Enteric Bacteria in Constructed Treatment Wetlands with Emergent Macrophytes: A Review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1355-1367.	1.7	120
135	Removal of Heavy Metals in a Horizontal Sub-Surface Flow Constructed Wetland. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1369-1379.	1.7	33
136	Removal of Phosphorus in Constructed Wetlands with Horizontal Sub-Surface Flow in the Czech Republic. Water, Air and Soil Pollution, 2004, 4, 657-670.	0.8	53
137	Removal of Phosphorus in Constructed Wetlands with Horizontal Sub-Surface Flow in the Czech Republic. , 2004, , 657-670.		3
138	The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, 2002, 18, 633-646.	3.6	331
139	Removal of BOD in constructed wetlands with horizontal sub-surface flow: Czech experience. Water Science and Technology, 1999, 40, 113.	2.5	21
140	Microbial characteristics of constructed wetlands. Water Science and Technology, 1997, 35, 117.	2.5	78
141	Constructed wetlands for wastewater treatment in the Czech Republic the first 5 years experience. Water Science and Technology, 1996, 34, 159-164.	2.5	79
142	Subsurface horizontal-flow constructed wetlands for wastewater treatment: The Czech experience. Wetlands Ecology and Management, 1996, 4, 199-206.	1.5	8
143	Constructed wetlands for wastewater treatment in the Czech Republic the first 5 years experience. Water Science and Technology, 1996, 34, 159.	2.5	19
144	The use of subsurface-flow constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering, 1996, 7, 1-14.	3.6	31

#	Article	IF	CITATIONS
145	SPECIES COMPOSITION, BIOMASS, AND NUTRIENT CONTENT OF PERIPHYTON IN THE FLORIDA EVERGLADES1. Journal of Phycology, 1995, 31, 343-354.	2.3	58
146	Constructed wetlands for wastewater treatment in the Czech Republic — state of the art. Water Science and Technology, 1995, 32, 357.	2.5	14
147	Response of everglades plant communities to nitrogen and phosphorus additions. Wetlands, 1995, 15, 258-271.	1.5	121
148	Uptake of lead, chromium, cadmium and cobalt byCladophora glomerata. Bulletin of Environmental Contamination and Toxicology, 1990, 44, 468-472.	2.7	27
149	The use of periphyton communities for nutrient removal from polluted streams. Hydrobiologia, 1988, 166, 225-237.	2.0	43
150	Ammonium uptake and biomass interaction inCladophora glomerata(Chlorophyta). British Phycological Journal, 1987, 22, 163-167.	1.2	2
151	Zn uptake by Cladophora glomerata. Hydrobiologia, 1987, 148, 97-101.	2.0	11
152	Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review. Toxicity Assessment, 1987, 2, 387-415.	0.6	55
153	Occurrence and Chemistry of Zinc in Freshwaters – its Toxicity and Bioaccumulation with Respect to Algae: A Review Part 2: Toxicity and Bioaccumulation with Respect to Algae. Clean - Soil, Air, Water, 1986, 14, 83-102.	0.6	7
154	Short-term uptake of heavy metals by periphyton algae. Hydrobiologia, 1984, 119, 171-179.	2.0	60