
Effie Apostolou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6276860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 2010, 28, 848-855.	17.5	1,080
2	A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells. Cell, 2012, 151, 1617-1632.	28.9	762
3	Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 2010, 465, 175-181.	27.8	727
4	Chromatin dynamics during cellular reprogramming. Nature, 2013, 502, 462-471.	27.8	355
5	Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells. Nature Genetics, 2012, 44, 398-405.	21.4	250
6	Regulation of Pluripotency and Cellular Reprogramming by the Ubiquitin-Proteasome System. Cell Stem Cell, 2012, 11, 783-798.	11.1	235
7	Virus Infection Induces NF-κB-Dependent Interchromosomal Associations Mediating Monoallelic IFN-β Gene Expression. Cell, 2008, 134, 85-96.	28.9	223
8	Genome-wide Chromatin Interactions of the Nanog Locus in Pluripotency, Differentiation, and Reprogramming. Cell Stem Cell, 2013, 12, 699-712.	11.1	194
9	Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature, 2021, 589, 299-305.	27.8	155
10	Widespread Mitotic Bookmarking by Histone Marks and Transcription Factors in Pluripotent Stem Cells. Cell Reports, 2017, 19, 1283-1293.	6.4	122
11	KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nature Cell Biology, 2019, 21, 1179-1190.	10.3	122
12	The Polycomb Group Protein L3mbtl2 Assembles an Atypical PRC1-Family Complex that Is Essential in Pluripotent Stem Cells and Early Development. Cell Stem Cell, 2012, 11, 319-332.	11.1	118
13	Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 611-624.	11.1	112
14	Small molecules facilitate rapid and synchronous iPSC generation. Nature Methods, 2014, 11, 1170-1176.	19.0	91
15	Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes. Cell Systems, 2019, 8, 446-455.e8.	6.2	65
16	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	6.4	64
17	H3K27ac bookmarking promotes rapid post-mitotic activation of the pluripotent stem cell program without impacting 3D chromatin reorganization. Molecular Cell, 2021, 81, 1732-1748.e8.	9.7	60
18	Genomic Analysis Reveals a Novel Nuclear Factor-κB (NF-κB)-binding Site in Alu-repetitive Elements. Journal of Biological Chemistry, 2011, 286, 38768-38782.	3.4	55

EFFIE APOSTOLOU

#	Article	IF	CITATIONS
19	A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports, 2016, 6, 704-716.	4.8	50
20	Transcription factors: building hubs in the 3D space. Cell Cycle, 2020, 19, 2395-2410.	2.6	45
21	Cellular trajectories and molecular mechanisms of iPSC reprogramming. Current Opinion in Genetics and Development, 2018, 52, 77-85.	3.3	42
22	iPS cells under attack. Nature, 2011, 474, 165-166.	27.8	37
23	TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Molecular Cell, 2019, 74, 1148-1163.e7.	9.7	36
24	A hPSC-based platform to discover gene-environment interactions that impact human β-cell and dopamine neuron survival. Nature Communications, 2018, 9, 4815.	12.8	29
25	EpiMethylTag: simultaneous detection of ATAC-seq or ChIP-seq signals with DNA methylation. Genome Biology, 2019, 20, 248.	8.8	27
26	Dynamic 3D Chromatin Reorganization during Establishment and Maintenance of Pluripotency. Stem Cell Reports, 2020, 15, 1176-1195.	4.8	25
27	The Chromatin Signature of Pluripotency: Establishment and Maintenance. Current Stem Cell Reports, 2016, 2, 255-262.	1.6	18
28	A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Developmental Cell, 2021, 56, 3052-3065.e5.	7.0	14
29	A Susceptibility Locus on Chromosome 13 Profoundly Impacts the Stability of Genomic Imprinting in Mouse Pluripotent Stem Cells. Cell Reports, 2020, 30, 3597-3604.e3.	6.4	13
30	Nascent Induced Pluripotent Stem Cells Efficiently Generate Entirely iPSC-Derived Mice while Expressing Differentiation-Associated Genes. Cell Reports, 2018, 22, 876-884.	6.4	12
31	Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Frontiers in Immunology, 2021, 12, 669881.	4.8	11
32	OCT2 pre-positioning facilitates cell fate transition and chromatin architecture changes in humoral immunity. Nature Immunology, 2021, 22, 1327-1340.	14.5	11
33	Rearranging the chromatin for pluripotency. Cell Cycle, 2014, 13, 167-168.	2.6	8
34	Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency. Stem Cell Reports, 2020, 15, 1233-1245.	4.8	7
35	Linking Differential Chromatin Loops to Transcriptional Decisions. Molecular Cell, 2008, 29, 154-156.	9.7	4
36	Shaping the Pluripotent Genome: Switches, Borders, and Loops. Cell Stem Cell, 2018, 22, 148-150.	11.1	0