
Dwight Jacob Kravitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A precise quantification of how prior experience informs current behavior Journal of Experimental Psychology: General, 2022, 151, 1854-1865.	2.1	3
2	Great expectations: minor differences in initial instructions have a major impact on visual search in the absence of feedback. Cognitive Research: Principles and Implications, 2021, 6, 19.	2.0	4
3	The Human Posterior Superior Temporal Sulcus Samples Visual Space Differently From Other Face-Selective Regions. Cerebral Cortex, 2020, 30, 778-785.	2.9	26
4	Practicing Good Laboratory Hygiene, Even in a Pandemic. Psychological Science, 2020, 31, 483-487.	3.3	4
5	How to correctly put the "subsequent―in subsequent search miss errors. Attention, Perception, and Psychophysics, 2019, 81, 2648-2657.	1.3	14
6	Visual working memory directly alters perception. Nature Human Behaviour, 2019, 3, 827-836.	12.0	56
7	Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images. NeuroImage, 2019, 197, 368-382.	4.2	43
8	Differential Representations of Perceived and Retrieved Visual Information in Hippocampus and Cortex. Cerebral Cortex, 2019, 29, 4452-4461.	2.9	28
9	A Big Data Approach to Revealing the Nature of Carryover Effects. Journal of Vision, 2019, 19, 76a.	0.3	0
10	Differential Sampling of Visual Space in Ventral and Dorsal Early Visual Cortex. Journal of Neuroscience, 2018, 38, 2294-2303.	3.6	42
11	Correction: Silson et al., "Differential Sampling of Visual Space in Ventral and Dorsal Early Visual Cortex― Journal of Neuroscience, 2018, 38, 9303-9309.	3.6	0
12	Get more out of your data: Breaking down response time to improve its usefulness. Journal of Vision, 2018, 18, 1033.	0.3	0
13	Population receptive fields in high-level visual cortex are tuned for specific categories. Journal of Vision, 2018, 18, 901.	0.3	0
14	Neural Tuning Curves in Visual Working Memory. Journal of Vision, 2018, 18, 885.	0.3	0
15	Privileged Functional Connectivity between the Visual Word Form Area and the Language System. Journal of Neuroscience, 2017, 37, 5288-5297.	3.6	108
16	Visual Search: You Are Who You Are (+ A Learning Curve). Perception, 2017, 46, 1434-1441.	1.2	8
17	Estimates of a priori power and false discovery rates induced by post-hoc changes from thousands of independent replications. Journal of Vision, 2017, 17, 223.	0.3	3
18	Contextual influences of room width and depth on egocentric distance judgments in natural scenes. Journal of Vision, 2017, 17, 1046.	0.3	0

DWIGHT JACOB KRAVITZ

#	Article	IF	CITATIONS
19	Impact of foveal bias on estimates of population recpetive fields. Journal of Vision, 2017, 17, 799.	0.3	0
20	Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. Journal of Vision, 2016, 16, 14.	0.3	45
21	Neural Representations Integrate the Current Field of View with the Remembered 360° Panorama in Scene-Selective Cortex. Current Biology, 2016, 26, 2463-2468.	3.9	60
22	Differences in Looking at Own- and Other-Race Faces Are Subtle and Analysis-Dependent: An Account of Discrepant Reports. PLoS ONE, 2016, 11, e0148253.	2.5	24
23	The Temporal Dynamics of Scene Processing: A Multifaceted EEG Investigation. ENeuro, 2016, 3, ENEURO.0139-16.2016.	1.9	54
24	A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex. Journal of Neuroscience, 2015, 35, 11921-11935.	3.6	134
25	Influence of lexical status and orthographic similarity on the multi-voxel response of the visual word form area. NeuroImage, 2015, 111, 321-328.	4.2	24
26	Holding a stick at both ends: on faces and expertise. Frontiers in Human Neuroscience, 2014, 8, 442.	2.0	4
27	Task context impacts visual object processing differentially across the cortex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E962-71.	7.1	140
28	Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain, 2014, 137, 2588-2599.	7.6	101
29	Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nature Neuroscience, 2013, 16, 997-999.	14.8	169
30	Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information. Cerebral Cortex, 2013, 23, 947-957.	2.9	128
31	Slower Rate of Binocular Rivalry in Autism. Journal of Neuroscience, 2013, 33, 16983-16991.	3.6	122
32	Tunnel Vision: Sharper Gradient of Spatial Attention in Autism. Journal of Neuroscience, 2013, 33, 6776-6781.	3.6	89
33	The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 2013, 17, 26-49.	7.8	921
34	Beyond perceptual expertise: revisiting the neural substrates of expert object recognition. Frontiers in Human Neuroscience, 2013, 7, 885.	2.0	47
35	Disentangling visual imagery and perception of real-world objects. NeuroImage, 2012, 59, 4064-4073.	4.2	198
36	Start Position Strongly Influences Fixation Patterns during Face Processing: Difficulties with Eye Movements as a Measure of Information Use. PLoS ONE, 2012, 7, e31106.	2.5	65

DWIGHT JACOB KRAVITZ

#	Article	IF	CITATIONS
37	Attentional control: Temporal relationships within the fronto-parietal network. Neuropsychologia, 2012, 50, 1202-1210.	1.6	29
38	Real-World Scene Representations in High-Level Visual Cortex: It's the Spaces More Than the Places. Journal of Neuroscience, 2011, 31, 7322-7333.	3.6	257
39	Toward a New Model of Scientific Publishing: Discussion and a Proposal. Frontiers in Computational Neuroscience, 2011, 5, 55.	2.1	43
40	A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 2011, 12, 217-230.	10.2	1,080
41	Space-, object-, and feature-based attention interact to organize visual scenes. Attention, Perception, and Psychophysics, 2011, 73, 2434-2447.	1.3	43
42	Cortical representations of bodies and faces are strongest in commonly experienced configurations. Nature Neuroscience, 2010, 13, 417-418.	14.8	97
43	High-Level Visual Object Representations Are Constrained by Position. Cerebral Cortex, 2010, 20, 2916-2925.	2.9	155
44	Sequential neural changes during motor learning in schizophrenia. Psychiatry Research - Neuroimaging, 2008, 163, 1-12.	1.8	11
45	How position dependent is visual object recognition?. Trends in Cognitive Sciences, 2008, 12, 114-122.	7.8	102
46	The space of an object: Object attention alters the spatial gradient in the surround Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 298-309.	0.9	27