## Pascale Desgroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275330/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrogen as a fuel additive in laminar premixed methane flames: Impact on the nucleation and growth of soot particles. Fuel, 2022, 315, 123125.                                                                                  | 6.4  | 8         |
| 2  | Experimental and numerical investigation of the transition from non sooting to sooting premixed n-butane flames, encompassing the nucleation flame conditions. Combustion and Flame, 2022, , 112172.                             | 5.2  | 3         |
| 3  | Experimental and modeling study of the high-temperature combustion chemistry of tetrahydrofurfuryl alcohol. Proceedings of the Combustion Institute, 2021, 38, 631-640.                                                          | 3.9  | 6         |
| 4  | Hydrophilic properties of soot particles exposed to OH radicals: A possible new mechanism involved in the contrail formation. Proceedings of the Combustion Institute, 2021, 38, 6441-6450.                                      | 3.9  | 3         |
| 5  | <i>In Situ</i> Laser-Induced Fluorescence and <i>Ex Situ</i> Cavity Ring-Down Spectroscopy Applied to NO Measurement in Flames: Microprobe Perturbation and Absolute Quantification. Energy & amp; Fuels, 2021, 35, 7107-7120.   | 5.1  | 10        |
| 6  | Quantitative measurement of atomic hydrogen in low-pressure methane flames using two-photon LIF calibrated by krypton. Combustion and Flame, 2021, 224, 248-259.                                                                 | 5.2  | 6         |
| 7  | The story of NCN as a key species in prompt-NO formation. Progress in Energy and Combustion Science, 2021, 87, 100940.                                                                                                           | 31.2 | 14        |
| 8  | Direct quantification of O-atom in low-pressure methane flames by using two-photon LIF. Proceedings of the Combustion Institute, 2021, 38, 1753-1760.                                                                            | 3.9  | 5         |
| 9  | Exploring the Flame Chemistry of C <sub>5</sub> Tetrahydrofuranic Biofuels: Tetrahydrofurfuryl<br>Alcohol and 2-Methyltetrahydrofuran. Energy & Fuels, 2021, 35, 18699-18715.                                                    | 5.1  | 5         |
| 10 | NO formation in high pressure premixed flames: Experimental results and validation of a new revised reaction mechanism. Fuel, 2020, 260, 116331.                                                                                 | 6.4  | 18        |
| 11 | A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. ACS Nano, 2020, 14, 12470-12490.                                                                                | 14.6 | 122       |
| 12 | The accuracy and precision of multi-line NO-LIF thermometry in a wide range of pressures and temperatures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107257.                                       | 2.3  | 13        |
| 13 | Evidence on the formation of dimers of polycyclic aromatic hydrocarbons in a laminar diffusion flame. Communications Chemistry, 2020, 3, .                                                                                       | 4.5  | 33        |
| 14 | Influence of the dry aerosol particle size distribution and morphology on the cloud condensation<br>nuclei activation. An experimental and theoretical investigation. Atmospheric Chemistry and Physics,<br>2020, 20, 4209-4225. | 4.9  | 8         |
| 15 | Quantitative measurement of volume fraction profiles of soot of different maturities in premixed<br>flames by extinction-calibrated laser-induced incandescence. Applied Physics B: Lasers and Optics, 2019,<br>125, 1.          | 2.2  | 20        |
| 16 | Unveiling trends in soot nucleation and growth: When secondary ion mass spectrometry meets statistical analysis. Carbon, 2019, 144, 815-830.                                                                                     | 10.3 | 33        |
| 17 | Quantitative NH measurements by using laser-based diagnostics in low-pressure flames. Proceedings of the Combustion Institute, 2019, 37, 1313-1320.                                                                              | 3.9  | 6         |
| 18 | A comprehensive protocol for chemical analysis of flame combustion emissions by secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1015-1025.                                                 | 1.5  | 17        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method. Combustion and Flame, 2018, 189, 190-206.                                                                                             | 5.2  | 55        |
| 20 | Experimental and numerical investigation of atmospheric laminar premixed n-butane flames in sooting conditions. Fuel, 2018, 211, 548-565.                                                                                                           | 6.4  | 12        |
| 21 | Cloud condensation nuclei from the activation with ozone of soot particles sampled from a kerosene diffusion flame. Aerosol Science and Technology, 2018, 52, 814-827.                                                                              | 3.1  | 17        |
| 22 | Investigation of the size of the incandescent incipient soot particles in premixed sooting and nucleation flames of <i>n</i> -butane using LII, HIM, and 1 nm-SMPS. Aerosol Science and Technology, 2017, 51, 916-935.                              | 3.1  | 56        |
| 23 | Comparative study of the soot formation process in a "nucleation―and a "sooting―low pressure premixed methane flame. Combustion and Flame, 2017, 184, 153-166.                                                                                      | 5.2  | 75        |
| 24 | Measurements and modelling of nitrogen species in CH4/O2/N2 flames doped with NO, NH3, or NH3+NO.<br>Combustion and Flame, 2017, 176, 48-59.                                                                                                        | 5.2  | 15        |
| 25 | Experimental and numerical study on rich methane/hydrogen/air laminar premixed flames at<br>atmospheric pressure: Effect of hydrogen addition to fuel on soot gaseous precursors. International<br>Journal of Hydrogen Energy, 2016, 41, 6929-6942. | 7.1  | 31        |
| 26 | Isomer discrimination of PAHs formed in sooting flames by jet-cooled laser-induced fluorescence:<br>application to the measurement of pyrene and fluoranthene. Applied Physics B: Lasers and Optics, 2016,<br>122, 1.                               | 2.2  | 17        |
| 27 | Modeling of NO formation in low pressure premixed flames. Combustion and Flame, 2016, 163, 557-575.                                                                                                                                                 | 5.2  | 87        |
| 28 | Measurements and modelling of HCN and CN species profiles in laminar CH 4 /O 2 /N 2 low pressure flames using LIF/CRDS techniques. Proceedings of the Combustion Institute, 2015, 35, 745-752.                                                      | 3.9  | 20        |
| 29 | Ignition of methane- and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge. Combustion and Flame, 2015, 162, 1336-1349.                                                                                                 | 5.2  | 56        |
| 30 | Energy balance in surface nanosecond dielectric barrier discharge. Plasma-assisted ignition of heavy hydrocarbons at high pressures. , 2015, , .                                                                                                    |      | 2         |
| 31 | Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame. Applied Physics B: Lasers and Optics, 2015, 118, 449-469.                                                                           | 2.2  | 31        |
| 32 | Progress toward the Quantitative Analysis of PAHs Adsorbed on Soot by Laser Desorption/Laser<br>Ionization/Time-of-Flight Mass Spectrometry. Environmental Science & Technology, 2015, 49,<br>10510-10520.                                          | 10.0 | 41        |
| 33 | Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence. Proceedings of the Combustion Institute, 2015, 35, 1843-1850.                                                                                 | 3.9  | 70        |
| 34 | Experimental study of the E(m,Âλ)/E(m,Â1064) ratio as a function of wavelength, fuel type, height above the<br>burner and temperature. Applied Physics B: Lasers and Optics, 2014, 116, 313-323.                                                    | 2.2  | 33        |
| 35 | Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths. Combustion and Flame, 2014, 161, 2479-2491.                                                         | 5.2  | 113       |
| 36 | Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames. Applied Physics B: Lasers and Optics, 2013, 112, 369-379.                                                                | 2.2  | 27        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Study of the formation of soot and its precursors in flames using optical diagnostics. Proceedings of the Combustion Institute, 2013, 34, 1713-1738.                                                                                                                                             | 3.9 | 183       |
| 38 | Reinvestigation of the spectroscopy of the transition of the NCN radical at high temperature:<br>Application to quantitative NCN measurement in flames. Combustion and Flame, 2013, 160, 755-765.                                                                                                | 5.2 | 18        |
| 39 | Time-resolved electric field measurements in nanosecond surface dielectric discharge. Comparison of different polarities. Ignition of combustible mixtures by surface discharge in a rapid compression machine , 2013, , .                                                                       |     | 13        |
| 40 | Laser Diagnostics for Selective and Quantitative Measurement of PAHs and Soot. Green Energy and Technology, 2013, , 303-331.                                                                                                                                                                     | 0.6 | 2         |
| 41 | Modeling of PAHs in low pressure sooting premixed methane flame. Energy, 2012, 43, 73-84.                                                                                                                                                                                                        | 8.8 | 28        |
| 42 | Pyrene Measurements in Sooting Low Pressure Methane Flames by Jet-Cooled Laser-Induced Fluorescence. Journal of Physical Chemistry A, 2011, 115, 14153-14162.                                                                                                                                    | 2.5 | 22        |
| 43 | NCO Quantitative Measurement in Premixed Low Pressure Flames by Combining LIF and CRDS Techniques. Journal of Physical Chemistry A, 2011, 115, 5346-5353.                                                                                                                                        | 2.5 | 10        |
| 44 | Laser induced incandescence determination ofÂtheÂratio ofÂtheÂsoot absorption functions at 532Ânm and<br>1064Ânm inÂtheÂnucleation zone of a low pressure premixed sooting flame. Applied Physics B: Lasers and<br>Optics, 2011, 104, 297-305.                                                   | 2.2 | 56        |
| 45 | Examination of wavelength dependent soot optical properties ofÂdiesel and diesel/rapeseed methyl<br>ester mixture by extinction spectra analysis and LII measurements. Applied Physics B: Lasers and Optics,<br>2011, 104, 253-271.                                                              | 2.2 | 100       |
| 46 | High-sensitivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using<br>laser desorption/laser ionization/time-of-flight mass spectrometry: An approach to studying the soot<br>inception process in low-pressure flames. Combustion and Flame, 2011, 158, 227-239. | 5.2 | 86        |
| 47 | Quantitative measurement of naphthalene in low-pressure flames by jet-cooled laser-induced fluorescence. Applied Physics B: Lasers and Optics, 2010, 100, 933-943.                                                                                                                               | 2.2 | 26        |
| 48 | Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure<br>CH4–O2–N2 and C2H2–O2–N2 flames. Combustion and Flame, 2010, 157, 1929-1941.                                                                                                                       | 5.2 | 92        |
| 49 | Effect of ethanol addition in gasoline and gasoline–surrogate on soot formation in turbulent spray<br>flames. Fuel, 2010, 89, 3952-3959.                                                                                                                                                         | 6.4 | 101       |
| 50 | Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence. Applied Physics B: Lasers and Optics, 2009, 95, 825-838.                                                                                                             | 2.2 | 23        |
| 51 | Implementation of a new spectroscopic method to quantify aromatic species involved in the formation of soot particles in flames. Applied Physics B: Lasers and Optics, 2008, 91, 387-395.                                                                                                        | 2.2 | 22        |
| 52 | Diode laser atomic fluorescence temperature measurements inÂlow-pressure flames. Applied Physics B:<br>Lasers and Optics, 2008, 93, 907-914.                                                                                                                                                     | 2.2 | 14        |
| 53 | Prompt-NO formation in methane/oxygen/nitrogen flames seeded with oxygenated volatile organic compounds: Methyl ethyl ketone or ethyl acetate. Combustion and Flame, 2008, 153, 186-201.                                                                                                         | 5.2 | 21        |
| 54 | Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation. Combustion and Flame, 2008, 155, 289-301.                                                                      | 5.2 | 54        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The response of buoyant laminar diffusion flames to low-frequency forcing. Combustion and Flame, 2007, 151, 676-684.                                                                                                      | 5.2 | 23        |
| 56 | Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064Ânm by laser induced incandescence. Applied Physics B: Lasers and Optics, 2007, 89, 417-427.                         | 2.2 | 63        |
| 57 | Influence of the photoionization process on the fragmentation of laser desorbed polycyclic aromatic hydrocarbons. Applied Surface Science, 2007, 253, 6435-6441.                                                          | 6.1 | 18        |
| 58 | IR laser resonant desorption of polycyclic aromatic hydrocarbons. Chemical Physics Letters, 2006, 423, 407-412.                                                                                                           | 2.6 | 26        |
| 59 | NO prediction in natural gas flames using GDF-Kin®3.0 mechanism NCN and HCN contribution to prompt-NO formation. Fuel, 2006, 85, 896-909.                                                                                 | 6.4 | 107       |
| 60 | IR wavelength-selective laser desorption via OH and CH stretching modes. Applied Surface Science, 2006, 253, 1090-1094.                                                                                                   | 6.1 | 14        |
| 61 | Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII)<br>signals of soot in backward and right-angle configuration. Applied Physics B: Lasers and Optics, 2006,<br>83, 423-433. | 2.2 | 30        |
| 62 | Wavelength-selective vibrationally excited photodesorption with tunable IR sources. Journal of Physics Condensed Matter, 2006, 18, S1357-S1387.                                                                           | 1.8 | 28        |
| 63 | 2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements. Applied Physics B: Lasers and Optics, 2005, 81, 181-186.                                                            | 2.2 | 18        |
| 64 | Wavelength-selective laser desorption of doped ice surfaces. Surface Science, 2005, 593, 221-228.                                                                                                                         | 1.9 | 8         |
| 65 | Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames. Applied Physics B: Lasers and Optics, 2004, 78, 485-492.                       | 2.2 | 79        |
| 66 | Experimental and modeling study of the oxidation of natural gas in a premixed flame, shock tube, and jet-stirred reactor. Combustion and Flame, 2004, 137, 109-128.                                                       | 5.2 | 69        |
| 67 | Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure.<br>Applied Physics B: Lasers and Optics, 2003, 76, 597-602.                                                              | 2.2 | 15        |
| 68 | Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO. Applied Physics B: Lasers and Optics, 2002, 74, 427-434.                                                   | 2.2 | 16        |
| 69 | NO reburning study based on species quantification obtained by coupling LIF and cavity ring-down spectroscopy. Faraday Discussions, 2001, 119, 305-319.                                                                   | 3.2 | 20        |
| 70 | Quantitative measurement of CN radical inÂaÂlow-pressure methane/air flame by cavity<br>ring-downÂspectroscopy. Comptes Rendus Physique, 2001, 2, 965-972.                                                                | 0.1 | 2         |
| 71 | Quantitative features and sensitivity of cavity ring-down measurements of species concentrations in flames. Combustion and Flame, 2001, 124, 656-667.                                                                     | 5.2 | 27        |
| 72 | Coupling of gas chromatography and molecular beam/mass spectrometry analytical techniques:<br>Application to flame structure study. Review of Scientific Instruments, 1999, 70, 2828-2835.                                | 1.3 | 6         |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame. Chemical Physics Letters, 1999, 305, 334-342.                                                       | 2.6 | 51        |
| 74 | Detailed analysis of low-pressure premixed flames of CH4 + O2 + N2: a study of prompt-NO. Combustion and Flame, 1999, 117, 291-306.                                                                            | 5.2 | 39        |
| 75 | Disturbance of laser-induced-fluorescence measurements of NO in methane–air flames containing chlorinated species by photochemical effects induced by 225-nm-laser excitation. Applied Optics, 1998, 37, 4951. | 2.1 | 5         |
| 76 | Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames. Applied Physics B: Lasers and Optics, 1997, 65, 639-646.                                   | 2.2 | 35        |
| 77 | Correction of LIF temperature measurements for laser absorption and fluorescence trapping in a flame. Applied Physics B: Lasers and Optics, 1995, 61, 401-407.                                                 | 2.2 | 45        |
| 78 | Instantaneous temperature measurement in a rapid-compression machine using laser Rayleigh scattering. Applied Physics B: Lasers and Optics, 1995, 61, 69-72.                                                   | 2.2 | 70        |
| 79 | Measurements of OH concentration in flames at high pressure by two-optical path laser-induced fluorescence. Applied Optics, 1992, 31, 2831.                                                                    | 2.1 | 11        |
| 80 | Cavity Ring-Down Spectroscopy for Combustion Studies. , 0, , 273-311.                                                                                                                                          |     | 5         |

6