
Michael Boy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observations on nocturnal growth of atmospheric clusters. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 365.	1.6	51
2	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Amp; Technology, 2022, 56, 770-778.	10.0	16
3	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	4.9	9
4	Aerosol dynamics simulations of the anatomical variability of e-cigarette particle and vapor deposition in a stochastic lung. Journal of Aerosol Science, 2021, 158, 105706.	3.8	9
5	Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing: Insights from highly polluted atmosphere. Atmospheric Research, 2021, 255, 105553.	4.1	16
6	A modelling study of OH, NO ₃ and H ₂ SO ₄ in 2007–2018 at SMEAR II, Finland: analysis of long-term trends. Environmental Science Atmospheres, 2021, 1, 449-472.	2.4	1
7	Mitigation Impact of Different Harvest Scenarios of Finnish Forests That Account for Albedo, Aerosols, and Trade-Offs of Carbon Sequestration and Avoided Emissions. Frontiers in Forests and Global Change, 2020, 3, .	2.3	32
8	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	12.8	91
9	Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: results from long-term measurements and process simulations. Atmospheric Chemistry and Physics, 2019, 19, 2671-2686.	4.9	30
10	Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics, 2019, 19, 2015-2061.	4.9	42
11	Aerosol mass yields of selected biogenic volatile organic compounds – a theoretical study with nearly explicit gas-phase chemistry. Atmospheric Chemistry and Physics, 2019, 19, 13741-13758.	4.9	21
12	Long-term total OH reactivity measurements in a boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 14431-14453.	4.9	16
13	Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China. Atmospheric Chemistry and Physics, 2018, 18, 11779-11791.	4.9	29
14	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 11547-11562.	4.9	39
15	Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model. Atmospheric Chemistry and Physics, 2017, 17, 1361-1379.	4.9	42
16	Boreal forest BVOC exchange: emissions versus in-canopy sinks. Atmospheric Chemistry and Physics, 2017, 17, 14309-14332.	4.9	18
17	Modeling the role of highly oxidized multifunctional organicÂmolecules for the growth of new particles overÂtheÂborealÂforestÂregion. Atmospheric Chemistry and Physics, 2017, 17, 8887-8901.	4.9	29
18	Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.	4.9	11

#	Article	IF	CITATIONS
19	α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. Journal of Physical Chemistry A, 2016, 120, 2569-2582.	2.5	95
20	A DNS study of aerosol and small-scale cloud turbulence interaction. Atmospheric Chemistry and Physics, 2016, 16, 7889-7898.	4.9	0
21	Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16, 2477-2492.	4.9	47
22	Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition. Atmospheric Chemistry and Physics, 2016, 16, 3145-3160.	4.9	14
23	High upward fluxes of formic acid from a boreal forest canopy. Geophysical Research Letters, 2016, 43, 9342-9351.	4.0	36
24	Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12679-12694.	3.3	122
25	Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest. Atmospheric Chemistry and Physics, 2015, 15, 8643-8656.	4.9	15
26	Comment on "Observation and modelling of HO _x radicals in a boreal forest" by Hens et al. (2014). Atmospheric Chemistry and Physics, 2015, 15, 3109-3110.	4.9	0
27	Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber. Atmospheric Chemistry and Physics, 2015, 15, 10777-10798.	4.9	19
28	Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmospheric Chemistry and Physics, 2015, 15, 12445-12464.	4.9	112
29	Simulations of atmospheric OH, O ₃ and NO ₃ reactivities within and above the boreal forest. Atmospheric Chemistry and Physics, 2015, 15, 3909-3932.	4.9	57
30	Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing. Atmospheric Environment, 2015, 103, 7-17.	4.1	53
31	A study of aerosol activation at the cloud edge with high resolution numerical simulations. Atmospheric Research, 2015, 153, 49-58.	4.1	4
32	Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport. Biogeosciences, 2014, 11, 5425-5443.	3.3	30
33	Modelling new particle formation events in the South African savannah. South African Journal of Science, 2014, 110, 12.	0.7	4
34	Temperature influence on the natural aerosol budget over boreal forests. Atmospheric Chemistry and Physics, 2014, 14, 8295-8308.	4.9	18
35	Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning – a comparison between process models of varying complexity. Atmospheric Chemistry and Physics, 2014, 14, 11853-11869.	4.9	12
36	Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM. Atmospheric Chemistry and Physics, 2014, 14, 7953-7993.	4.9	100

#	Article	IF	CITATIONS
37	Modelling new particle formation from Jul^lich plant atmosphere chamber and CERN CLOUD chamber measurements. , 2013, , .		Ο
38	The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2013, 13, 11157-11167.	4.9	39
39	Oxidation of SO ₂ by stabilized Criegee intermediate (sCl) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmospheric Chemistry and Physics, 2013, 13, 3865-3879.	4.9	131
40	BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmospheric Chemistry and Physics, 2012, 12, 10077-10096.	4.9	73
41	A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmospheric Chemistry and Physics, 2012, 12, 1-87.	4.9	265
42	Air pollution control and decreasing new particle formation lead to strong climate warming. Atmospheric Chemistry and Physics, 2012, 12, 1515-1524.	4.9	150
43	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	4.9	45
44	Chemodiversity of a Scots pine stand and implications for terpene air concentrations. Biogeosciences, 2012, 9, 689-702.	3.3	137
45	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	4.9	108
46	A statistical proxy for sulphuric acid concentration. Atmospheric Chemistry and Physics, 2011, 11, 11319-11334.	4.9	124
47	Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11, 12663-12671.	4.9	75
48	Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 2011, 11, 13269-13285.	4.9	121
49	Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism. Atmospheric Chemistry and Physics, 2011, 11, 5591-5601.	4.9	31
50	Large methane releases lead to strong aerosol forcing and reduced cloudiness. Atmospheric Chemistry and Physics, 2011, 11, 6961-6969.	4.9	14
51	Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmospheric Chemistry and Physics, 2011, 11, 9709-9719.	4.9	69
52	SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation. Atmospheric Chemistry and Physics, 2011, 11, 43-51.	4.9	86
53	Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM. Atmospheric Chemistry and Physics, 2011, 11, 5867-5896.	4.9	35
54	A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 321-343.	4.9	297

#	Article	IF	CITATIONS
55	The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest. Atmospheric Chemistry and Physics, 2010, 10, 2919-2926.	4.9	45
56	Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10, 3743-3757.	4.9	48
57	Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4775-4793.	4.9	212
58	MECCO: A method to estimate concentrations of condensing organics—Description and evaluation of a Markov chain Monte Carlo application. Journal of Aerosol Science, 2010, 41, 1080-1089.	3.8	3
59	Atmospheric nucleation and initial steps of particle growth: Numerical comparison of different theories and hypotheses. Atmospheric Research, 2010, 98, 229-236.	4.1	17
60	OH Reactivity Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions. Environmental Science & Technology, 2010, 44, 6614-6620.	10.0	127
61	Comparison of formation conditions of secondary aerosol particles in boreal forests of Southern Finland and Siberia. Russian Journal of Earth Sciences, 2010, 11, 1-11.	0.7	2
62	Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9, 7435-7448.	4.9	348
63	A new parametrization for ambient particle formation over coniferous forests and its potential implications for the future. Atmospheric Chemistry and Physics, 2009, 9, 8079-8090.	4.9	25
64	Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation. Atmospheric Chemistry and Physics, 2009, 9, 2933-2947.	4.9	25
65	Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest. Atmospheric Chemistry and Physics, 2009, 9, 3317-3330.	4.9	56
66	Relevance of ion-induced nucleation of sulfuric acid and water in the lower troposphere over the boreal forest at northern latitudes. Atmospheric Research, 2008, 90, 151-158.	4.1	35
67	New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics, 2008, 8, 1577-1590.	4.9	83
68	Ambient sesquiterpene concentration and its link to air ion measurements. Atmospheric Chemistry and Physics, 2007, 7, 2893-2916.	4.9	27
69	Newâ€particle formation in connection with a nocturnal lowâ€level jet: Observations and modeling results. Geophysical Research Letters, 2007, 34, .	4.0	7
70	Relevance of Several Nucleation Theories in Different Environments. , 2007, , 87-91.		4
71	MALTE $\hat{a} \in $ model to predict new aerosol formation in the lower troposphere. Atmospheric Chemistry and Physics, 2006, 6, 4499-4517.	4.9	73
72	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 2006, 6, 2017-2038.	4.9	447

#	Article	IF	CITATIONS
73	Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 2006, 6, 4079-4091.	4.9	444
74	Sulphuric acid closure and contribution to nucleation mode particle growth. Atmospheric Chemistry and Physics, 2005, 5, 863-878.	4.9	178
75	The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe. Atmospheric Chemistry and Physics, 2005, 5, 1773-1785.	4.9	127
76	The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophysical Research Letters, 2005, 32, .	4.0	113
77	PHOTO STATIONARY CALCULATIONS OF SULPHURIC ACID AND ITS CONTRIBUTION TO NUCLEATION MODE PARTICLE GROWTH. Journal of Aerosol Science, 2004, 35, S1231-S1232.	3.8	0
78	A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 2004, 4, 557-562.	4.9	337
79	Overview of the field measurement campaign in HyytiÃѬ҈¤August 2001 in the framework of the EU project OSOA. Atmospheric Chemistry and Physics, 2004, 4, 657-678.	4.9	56
80	Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics. Journal of Geophysical Research, 2003, 108, .	3.3	61
81	Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters. Atmospheric Chemistry and Physics, 2002, 2, 1-16.	4.9	169
82	The part of the solar spectrum with the highest influence on the formation of SOA in the continental boundary layer. Atmospheric Chemistry and Physics, 2002, 2, 375-386.	4.9	25
83	Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 462-478.	1.6	38
84	Interaction between SO2 and submicron atmospheric particles. Atmospheric Research, 2000, 54, 41-57.	4.1	49
85	Global stratospheric distribution of halocarbons. Atmospheric Environment, 1996, 30, 1787-1796.	4.1	36