
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6274671/publications.pdf Version: 2024-02-01

HEDVÃO LACTEL

#	Article	IF	CITATIONS
1	Effects of mixing tree species and water availability on soil organic carbon stocks are depth dependent in a temperate podzol. European Journal of Soil Science, 2022, 73, .	3.9	5
2	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	5.7	124
3	Preventing invasions of Asian longhorn beetle and citrus longhorn beetle: are we on the right track?. Journal of Pest Science, 2022, 95, 41-66.	3.7	17
4	Impact of Stand and Landscape Management on Forest Pest Damage. Annual Review of Entomology, 2022, 67, 181-199.	11.8	21
5	Effects of tree mixture on forest productivity: tree species addition versus substitution. European Journal of Forest Research, 2022, 141, 165-175.	2.5	4
6	Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores' enemies. Basic and Applied Ecology, 2022, 58, 130-138.	2.7	15
7	Climatic conditions, not above- and belowground resource availability and uptake capacity, mediate tree diversity effects on productivity and stability. Science of the Total Environment, 2022, 812, 152560.	8.0	8
8	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
9	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
10	Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography, 2022, 31, 872-885.	5.8	16
11	Forest Diversity Reduces the Prevalence of Pathogens Transmitted by the Tick Ixodes ricinus. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	3
12	Climate affects neighbourâ€induced changes in leaf chemical defences and tree diversity–herbivory relationships. Functional Ecology, 2021, 35, 67-81.	3.6	12
13	Mixing beech with fir or pubescent oak does not help mitigate drought exposure at the limit of its climatic range. Forest Ecology and Management, 2021, 482, 118840.	3.2	4
14	The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 2021, 481, 118687.	3.2	104
15	Tree Diversity and Forest Resistance to Insect Pests: Patterns, Mechanisms, and Prospects. Annual Review of Entomology, 2021, 66, 277-296.	11.8	110
16	Modelling Monochamus galloprovincialis dispersal trajectories across a heterogeneous landscape to optimize monitoring by trapping networks. Landscape Ecology, 2021, 36, 931-941.	4.2	5
17	Tree species richness and water availability interact to affect soil microbial processes. Soil Biology and Biochemistry, 2021, 155, 108180.	8.8	18
18	Combining phytochemicals and multitrophic interactions to control forest insect pests. Current Opinion in Insect Science, 2021, 44, 101-106.	4.4	5

#	Article	IF	CITATIONS
19	Concerns about reported harvests in European forests. Nature, 2021, 592, E15-E17.	27.8	56
20	Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. Journal of Pest Science, 2021, 94, 615-637.	3.7	45
21	Above―and belowâ€ground complementarity rather than selection drive tree diversity–productivity relationships in European forests. Functional Ecology, 2021, 35, 1756-1767.	3.6	15
22	Disturbed habitats locally reduce the signal of deep evolutionary history in functional traits of plants. New Phytologist, 2021, 232, 1849-1862.	7.3	7
23	Changes in host basal area explain associational resistance of mixed forests to primary pests. Forest Ecology and Management, 2021, 495, 119374.	3.2	7
24	Tree diversity is key for promoting the diversity and abundance of forestâ€associated taxa in Europe. Oikos, 2020, 129, 133-146.	2.7	80
25	Carabid activityâ€density increases with forest vegetation diversity at different spatial scales. Insect Conservation and Diversity, 2020, 13, 36-46.	3.0	24
26	Associational resistance to a pest insect fades with time. Journal of Pest Science, 2020, 93, 427-437.	3.7	16
27	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
28	The Risk of Bark and Ambrosia Beetles Associated with Imported Non-Coniferous Wood and Potential Horizontal Phytosanitary Measures. Forests, 2020, 11, 342.	2.1	17
29	Temporal trends in tree defoliation and response to multiple biotic and abiotic stresses. Forest Ecology and Management, 2020, 477, 118476.	3.2	11
30	Effect of tree mixtures and water availability on belowground complementarity of fine roots of birch and pine planted on sandy podzol. Plant and Soil, 2020, 457, 437-455.	3.7	6
31	Canopy composition and drought shape understorey plant assemblages in a young tree diversity experiment. Journal of Vegetation Science, 2020, 31, 803-816.	2.2	12
32	Using forest gap models and experimental data to explore long-term effects of tree diversity on the productivity of mixed planted forests. Annals of Forest Science, 2020, 77, 1.	2.0	14
33	Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought. Journal of Ecology, 2020, 108, 1511-1522.	4.0	31
34	Tree species identity and forest composition affect the number of oak processionary moth captured in pheromone traps and the intensity of larval defoliation. Agricultural and Forest Entomology, 2020, 22, 169-177.	1.3	4
35	A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera:) Tj ETQq1 1 0.78	4314 rgBT 2.4	Overlock 10
36	Effectiveness of clearâ€cuttings in nonâ€fragmented pine forests in relation toÂEU regulations for the	4.0	9

eradication of the pine wood nematode. Journal of Applied Ecology, 2020, 57, 460-466. 36

4.0

#	Article	IF	CITATIONS
37	Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biology and Biochemistry, 2020, 148, 107864.	8.8	37
38	Multi-criteria analysis to compare multiple risks associated with management alternatives in planted forests. Forest Systems, 2020, 29, e004.	0.3	1
39	A novel, easy method for estimating pheromone trap attraction range: application to the pine sawyer beetle <i>Monochamus galloprovincialis</i> . Agricultural and Forest Entomology, 2019, 21, 8-14.	1.3	19
40	Responses of forest insect pests to climate change: not so simple. Current Opinion in Insect Science, 2019, 35, 103-108.	4.4	160
41	Tree diversity reduces pine infestation by mistletoe. Forest Ecology and Management, 2019, 449, 117470.	3.2	13
42	Tree diversity drives associational resistance to herbivory at both forest edge and interior. Ecology and Evolution, 2019, 9, 9040-9051.	1.9	18
43	Fungal endophyte communities differ between chestnut galls and surrounding foliar tissues. Fungal Ecology, 2019, 42, 100876.	1.6	10
44	How do trees respond to species mixing in experimental compared to observational studies?. Ecology and Evolution, 2019, 9, 11254-11265.	1.9	8
45	Alternatives to neonicotinoids. Environment International, 2019, 129, 423-429.	10.0	103
46	Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecological Modelling, 2019, 402, 85-92.	2.5	20
47	Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182193.	2.6	21
48	Interactive Effects of Tree Mixing and Drought on a Primary Forest Pest. Frontiers in Forests and Global Change, 2019, 2, .	2.3	8
49	Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 2019, 56, 733-744.	4.0	58
50	Antiâ€herbivore defences and insect herbivory: Interactive effects of drought and tree neighbours. Journal of Ecology, 2018, 106, 2043-2057.	4.0	39
51	Positive biodiversity–productivity relationships in forests: climate matters. Biology Letters, 2018, 14, 20170747.	2.3	133
52	Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 2018, 8, 5627.	3.3	133
53	Plant neighbour identity and invasive pathogen infection affect associational resistance to an invasive gall wasp. Biological Invasions, 2018, 20, 1459-1473.	2.4	21
54	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.	4.2	113

#	Article	IF	CITATIONS
55	Drought and plant neighbourhood interactively determine herbivore consumption and performance. Scientific Reports, 2018, 8, 5930.	3.3	20
56	Difference in shade tolerance drives the mixture effect on oak productivity. Journal of Ecology, 2018, 106, 1073-1082.	4.0	44
57	Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology, 2018, 99, 300-311.	3.2	60
58	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	6.4	74
59	Can tree species richness attenuate the effect of drought on organic matter decomposition and stabilization in young plantation forests?. Acta Oecologica, 2018, 93, 30-40.	1.1	5
60	Can linear transportation infrastructure verges constitute a habitat and/or a corridor for insects in temperate landscapes? A systematic review. Environmental Evidence, 2018, 7, .	2.7	49
61	The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere, 2017, 8, e01637.	2.2	21
62	Ecological Stability of Mixed-Species Forests. , 2017, , 337-382.		78
63	Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 2017, 20, 1414-1426.	6.4	244
64	Geographical variation in climatic drivers of the pine processionary moth population dynamics. Forest Ecology and Management, 2017, 404, 141-155.	3.2	12
65	Bottomâ€up and topâ€down effects of tree species diversity on leaf insect herbivory. Ecology and Evolution, 2017, 7, 3520-3531.	1.9	50
66	Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 2017, 26, 3005-3035.	2.6	505
67	Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Current Forestry Reports, 2017, 3, 223-243.	7.4	279
68	Potential effects of climate warming on the survivorship of adult <i>Monochamus galloprovincialis</i> . Agricultural and Forest Entomology, 2017, 19, 192-199.	1.3	10
69	Effect of temperature on the reproductive success, developmental rate and brood characteristics of <i><scp>l</scp>ps sexdentatus</i> (<scp>B</scp> oern.). Agricultural and Forest Entomology, 2017, 19, 23-33.	1.3	23
70	The Effects of Poplar Plantations on Vascular Plant Diversity in Riparian Landscapes. Forests, 2016, 7, 50.	2.1	8
71	Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nature Communications, 2016, 7, 11109.	12.8	185
72	Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecology and Evolution, 2016, 6, 2426-2438.	1.9	40

#	Article	IF	CITATIONS
73	Host range expansion is density dependent. Oecologia, 2016, 182, 779-788.	2.0	12
74	Pest damage in mixed forests: Disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. Forest Ecology and Management, 2016, 378, 103-110.	3.2	48
75	The Evolutionary Legacy of Diversification Predicts Ecosystem Function. American Naturalist, 2016, 188, 398-410.	2.1	14
76	Forest edges have high conservation value for bird communities in mosaic landscapes. Ecology and Evolution, 2016, 6, 5178-5189.	1.9	67
77	Tree diversity reduces pest damage in mature forests across Europe. Biology Letters, 2016, 12, 20151037.	2.3	85
78	Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia, 2016, 182, 529-537.	2.0	38
79	Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3557-3562.	7.1	196
80	Deciduous trees increase bat diversity at stand and landscape scales in mosaic pine plantations. Landscape Ecology, 2016, 31, 291-300.	4.2	29
81	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
82	Physiological significance of forest tree defoliation: Results from a survey in a mixed forest in Tuscany (central Italy). Forest Ecology and Management, 2016, 361, 170-178.	3.2	35
83	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	5.5	203
84	Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos, 2015, 124, 1674-1685.	2.7	64
85	Tree Diversity Limits the Impact of an Invasive Forest Pest. PLoS ONE, 2015, 10, e0136469.	2.5	51
86	Periodicity and synchrony of pine processionary moth outbreaks in France. Forest Ecology and Management, 2015, 354, 309-317.	3.2	41
87	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	4.0	131
88	Woodland habitat quality prevails over fragmentation for shaping butterfly diversity in deciduous forest remnants. Forest Ecology and Management, 2015, 357, 171-180.	3.2	14
89	Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology, 2015, 52, 69-77.	4.0	79
90	Phylogeography of the ladybird Iberorhyzobius rondensis, a potential biological control agent of the invasive alien pine bast scale Matsucoccus feytaudi. BioControl, 2015, 60, 59-69.	2.0	9

#	Article	IF	CITATIONS
91	Insect â \in " Tree Interactions in Thaumetopoea pityocampa. , 2015, , 265-310.		18
92	Numerical and Functional Responses of Forest Bats to a Major Insect Pest in Pine Plantations. PLoS ONE, 2014, 9, e109488.	2.5	68
93	Insect herbivores should follow plants escaping their relatives. Oecologia, 2014, 176, 521-532.	2.0	19
94	Effect of host tree density and apparency on the probability of attack by the pine processionary moth. Forest Ecology and Management, 2014, 334, 185-192.	3.2	46
95	Egg mortality in the pine processionary moth: habitat diversity, microclimate and predation effects. Agricultural and Forest Entomology, 2014, 16, 284-292.	1.3	10
96	Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. Journal of Applied Ecology, 2014, 51, 134-141.	4.0	150
97	Climateâ€driven change in plant–insect interactions along elevation gradients. Functional Ecology, 2014, 28, 46-54.	3.6	189
98	Tree species composition rather than diversity triggers associational resistance to the pine processionary moth. Basic and Applied Ecology, 2014, 15, 516-523.	2.7	43
99	Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood. Soil Biology and Biochemistry, 2014, 78, 204-212.	8.8	9
100	Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodiversity and Conservation, 2014, 23, 2613-2635.	2.6	51
101	Landscape diversity slows the spread of an invasive forest pest species. Ecography, 2014, 37, 648-658.	4.5	39
102	Plant neighbours mediate bird predation effects on arthropod abundance and herbivory. Ecological Entomology, 2013, 38, 448-455.	2.2	7
103	Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. Forest Ecology and Management, 2013, 301, 43-50.	3.2	225
104	Plant apparency, an overlooked driver of associational resistance to insect herbivory. Journal of Ecology, 2013, 101, 418-429.	4.0	210
105	Improving the Efficiency of Lepidopteran Pest Detection and Surveillance: Constraints and Opportunities for Multiple-Species Trapping. Journal of Chemical Ecology, 2013, 39, 50-58.	1.8	29
106	Pine growth response to processionary moth defoliation across a 40-year chronosequence. Forest Ecology and Management, 2013, 293, 29-38.	3.2	42
107	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 281-291.	2.7	179
108	Response of insect parasitism to elevation depends on host and parasitoid life-history strategies. Biology Letters, 2013, 9, 20130028.	2.3	34

#	Article	IF	CITATIONS
109	Community genetics in the time of nextâ€generation molecular technologies. Molecular Ecology, 2013, 22, 3198-3207.	3.9	25
110	A Multicriteria Risk Analysis to Evaluate Impacts of Forest Management Alternatives on Forest Health in Europe. Ecology and Society, 2012, 17, .	2.3	40
111	Defoliation by processionary moth significantly reduces tree growth: a quantitative review. Annals of Forest Science, 2012, 69, 857-866.	2.0	86
112	Influence of surrounding vegetation on insect herbivory: A matter of spatial scale and herbivore specialisation. Basic and Applied Ecology, 2012, 13, 458-465.	2.7	23
113	Unraveling plant–animal diversity relationships: a metaâ€regression analysis. Ecology, 2012, 93, 2115-2124.	3.2	114
114	Genetic Diversity Increases Insect Herbivory on Oak Saplings. PLoS ONE, 2012, 7, e44247.	2.5	54
115	Hide and seek in forests: colonization by the pine processionary moth is impeded by the presence of nonhost trees. Agricultural and Forest Entomology, 2012, 14, 19-27.	1.3	56
116	Drought effects on damage by forest insects and pathogens: a metaâ€analysis. Global Change Biology, 2012, 18, 267-276.	9.5	381
117	Bird predation enhances tree seedling resistance to insect herbivores in contrasting forest habitats. Oecologia, 2012, 168, 415-424.	2.0	24
118	Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators, 2011, 11, 1027-1039.	6.3	327
119	Conserving butterflies in fragmented plantation forests: are edge and interior habitats equally important?. Journal of Insect Conservation, 2011, 15, 591-601.	1.4	50
120	Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 2011, 15, 653-669.	1.4	93
121	Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia, 2011, 166, 703-711.	2.0	126
122	Novel insectâ€ŧree associations resulting from accidental and intentional biological â€~invasions': a metaâ€analysis of effects on insect fitness. Ecology Letters, 2010, 13, 506-515.	6.4	78
123	Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers. Annals of Forest Science, 2009, 66, 701-701.	2.0	212
124	Importance of semi-natural habitats for the conservation of butterfly communities in landscapes dominated by pine plantations. Biodiversity and Conservation, 2008, 17, 1149-1169.	2.6	52
125	Relevance of exotic pine plantations as a surrogate habitat for ground beetles (Carabidae) where native forest is rare. Biodiversity and Conservation, 2008, 17, 1171-1185.	2.6	44
126	Plantation forests and biodiversity: oxymoron or opportunity?. Biodiversity and Conservation, 2008, 17, 925-951.	2.6	968

#	Article	IF	CITATIONS
127	Changes in quantitative patterns of dead wood in maritime pine plantations over time. Forest Ecology and Management, 2008, 256, 913-921.	3.2	23
128	Plantation forests and biodiversity: oxymoron or opportunity?. Topics in Biodiversity and Conservation, 2008, , 1-27.	1.0	6
129	Tree diversity reduces herbivory by forest insects. Ecology Letters, 2007, 10, 835-848.	6.4	548
130	The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure. Journal of Biogeography, 2007, 34, 652-664.	3.0	76
131	The ecology of forest insect invasions and advances in their management. Canadian Journal of Forest Research, 2006, 36, 263-268.	1.7	128
132	Modelling response of insect trap captures to pheromone dose. Ecological Modelling, 2006, 197, 247-257.	2.5	34
133	Comparative responses of bird, carabid, and spider assemblages to stand and landscape diversity in maritime pine plantation forests. Ecoscience, 2005, 12, 110-121.	1.4	82
134	Biology and rearing of <i>Pseudocoremia suavis</i> , an endemic looper (Lepidoptera: Geometridae) with a history of outbreaks on exotic conifers. New Zealand Entomologist, 2004, 27, 73-82.	0.3	14
135	Terpene variations in maritime pine constitutive oleoresin related to host tree selection byDioryctria sylvestrella RATZ. (Lepidoptera: Pyralidae). Journal of Chemical Ecology, 1996, 22, 1037-1050.	1.8	40
136	Infestation dynamics of Dioryctria sylvestrella (Ratz.) (Lepidoptera: Pyralidae) in pruned maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 1994, 67, 11-22.	3.2	11
137	Inter-tree variability in the induced defense reaction of Scots pine to single inoculations by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. Forest Ecology and Management, 1993, 59, 257-270.	3.2	31
138	INDIVIDUAL VARIABILITY OF THE FLIGHT POTENTIAL OF <i>IPS SEXDENTATUS</i> BOERN. (COLEOPTERA:) Tj ETQq 1993, 125, 919-930.	0 0 0 rgBT 0.8	/Overlock 1 29
139	Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success?. NeoBiota, 0, 65, 169-191.	1.0	11
140	Urban trees facilitate the establishment of non-native forest insects. NeoBiota, 0, 52, 25-46.	1.0	42
141	Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 0, 58, 107-127.	1.0	28
142	Insect herbivory on urban trees: Complementary effects of tree neighbours and predation. , 0, 2, .		2
143	Host-mediated, cross-generational intraspecific competition in a herbivore species. , 0, 1, .		2