
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6274671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Plantation forests and biodiversity: oxymoron or opportunity?. Biodiversity and Conservation, 2008, 17, 925-951.	2.6	968
4	Tree diversity reduces herbivory by forest insects. Ecology Letters, 2007, 10, 835-848.	6.4	548
5	Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 2017, 26, 3005-3035.	2.6	505
6	Drought effects on damage by forest insects and pathogens: a metaâ€analysis. Global Change Biology, 2012, 18, 267-276.	9.5	381
7	Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators, 2011, 11, 1027-1039.	6.3	327
8	Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Current Forestry Reports, 2017, 3, 223-243.	7.4	279
9	Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 2017, 20, 1414-1426.	6.4	244
10	Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. Forest Ecology and Management, 2013, 301, 43-50.	3.2	225
11	Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers. Annals of Forest Science, 2009, 66, 701-701.	2.0	212
12	Plant apparency, an overlooked driver of associational resistance to insect herbivory. Journal of Ecology, 2013, 101, 418-429.	4.0	210
13	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	5.5	203
14	Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3557-3562.	7.1	196
15	Climateâ€driven change in plant–insect interactions along elevation gradients. Functional Ecology, 2014, 28, 46-54.	3.6	189
16	Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nature Communications, 2016, 7, 11109.	12.8	185
17	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 281-291.	2.7	179
18	Responses of forest insect pests to climate change: not so simple. Current Opinion in Insect Science, 2019, 35, 103-108.	4.4	160

#	Article	IF	CITATIONS
19	Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. Journal of Applied Ecology, 2014, 51, 134-141.	4.0	150
20	Positive biodiversity–productivity relationships in forests: climate matters. Biology Letters, 2018, 14, 20170747.	2.3	133
21	Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 2018, 8, 5627.	3.3	133
22	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	4.0	131
23	The ecology of forest insect invasions and advances in their management. Canadian Journal of Forest Research, 2006, 36, 263-268.	1.7	128
24	Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia, 2011, 166, 703-711.	2.0	126
25	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	5.7	124
26	Unraveling plant–animal diversity relationships: a metaâ€regression analysis. Ecology, 2012, 93, 2115-2124.	3.2	114
27	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.	4.2	113
28	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
29	Tree Diversity and Forest Resistance to Insect Pests: Patterns, Mechanisms, and Prospects. Annual Review of Entomology, 2021, 66, 277-296.	11.8	110
30	The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 2021, 481, 118687.	3.2	104
31	Alternatives to neonicotinoids. Environment International, 2019, 129, 423-429.	10.0	103
32	Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 2011, 15, 653-669.	1.4	93
33	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
34	Defoliation by processionary moth significantly reduces tree growth: a quantitative review. Annals of Forest Science, 2012, 69, 857-866.	2.0	86
35	Tree diversity reduces pest damage in mature forests across Europe. Biology Letters, 2016, 12, 20151037.	2.3	85
36	Comparative responses of bird, carabid, and spider assemblages to stand and landscape diversity in maritime pine plantation forests. Ecoscience, 2005, 12, 110-121.	1.4	82

#	Article	IF	CITATIONS
37	Tree diversity is key for promoting the diversity and abundance of forestâ€associated taxa in Europe. Oikos, 2020, 129, 133-146.	2.7	80
38	Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology, 2015, 52, 69-77.	4.0	79
39	Novel insectâ€ŧree associations resulting from accidental and intentional biological â€~invasions': a metaâ€analysis of effects on insect fitness. Ecology Letters, 2010, 13, 506-515.	6.4	78
40	Ecological Stability of Mixed-Species Forests. , 2017, , 337-382.		78
41	The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure. Journal of Biogeography, 2007, 34, 652-664.	3.0	76
42	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	6.4	74
43	Numerical and Functional Responses of Forest Bats to a Major Insect Pest in Pine Plantations. PLoS ONE, 2014, 9, e109488.	2.5	68
44	Forest edges have high conservation value for bird communities in mosaic landscapes. Ecology and Evolution, 2016, 6, 5178-5189.	1.9	67
45	Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos, 2015, 124, 1674-1685.	2.7	64
46	Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology, 2018, 99, 300-311.	3.2	60
47	Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 2019, 56, 733-744.	4.0	58
48	Hide and seek in forests: colonization by the pine processionary moth is impeded by the presence of nonhost trees. Agricultural and Forest Entomology, 2012, 14, 19-27.	1.3	56
49	Concerns about reported harvests in European forests. Nature, 2021, 592, E15-E17.	27.8	56
50	Genetic Diversity Increases Insect Herbivory on Oak Saplings. PLoS ONE, 2012, 7, e44247.	2.5	54
51	Importance of semi-natural habitats for the conservation of butterfly communities in landscapes dominated by pine plantations. Biodiversity and Conservation, 2008, 17, 1149-1169.	2.6	52
52	Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodiversity and Conservation, 2014, 23, 2613-2635.	2.6	51
53	Tree Diversity Limits the Impact of an Invasive Forest Pest. PLoS ONE, 2015, 10, e0136469.	2.5	51
54	Conserving butterflies in fragmented plantation forests: are edge and interior habitats equally important?. Journal of Insect Conservation, 2011, 15, 591-601.	1.4	50

#	Article	IF	CITATIONS
55	Bottomâ€up and topâ€down effects of tree species diversity on leaf insect herbivory. Ecology and Evolution, 2017, 7, 3520-3531.	1.9	50
56	Can linear transportation infrastructure verges constitute a habitat and/or a corridor for insects in temperate landscapes? A systematic review. Environmental Evidence, 2018, 7, .	2.7	49
57	Pest damage in mixed forests: Disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. Forest Ecology and Management, 2016, 378, 103-110.	3.2	48
58	Effect of host tree density and apparency on the probability of attack by the pine processionary moth. Forest Ecology and Management, 2014, 334, 185-192.	3.2	46
59	Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. Journal of Pest Science, 2021, 94, 615-637.	3.7	45
60	Relevance of exotic pine plantations as a surrogate habitat for ground beetles (Carabidae) where native forest is rare. Biodiversity and Conservation, 2008, 17, 1171-1185.	2.6	44
61	Difference in shade tolerance drives the mixture effect on oak productivity. Journal of Ecology, 2018, 106, 1073-1082.	4.0	44
62	Tree species composition rather than diversity triggers associational resistance to the pine processionary moth. Basic and Applied Ecology, 2014, 15, 516-523.	2.7	43
63	Pine growth response to processionary moth defoliation across a 40-year chronosequence. Forest Ecology and Management, 2013, 293, 29-38.	3.2	42
64	Urban trees facilitate the establishment of non-native forest insects. NeoBiota, 0, 52, 25-46.	1.0	42
65	Periodicity and synchrony of pine processionary moth outbreaks in France. Forest Ecology and Management, 2015, 354, 309-317.	3.2	41
66	Terpene variations in maritime pine constitutive oleoresin related to host tree selection byDioryctria sylvestrella RATZ. (Lepidoptera: Pyralidae). Journal of Chemical Ecology, 1996, 22, 1037-1050.	1.8	40
67	A Multicriteria Risk Analysis to Evaluate Impacts of Forest Management Alternatives on Forest Health in Europe. Ecology and Society, 2012, 17, .	2.3	40
68	Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecology and Evolution, 2016, 6, 2426-2438.	1.9	40
69	Landscape diversity slows the spread of an invasive forest pest species. Ecography, 2014, 37, 648-658.	4.5	39
70	Antiâ€herbivore defences and insect herbivory: Interactive effects of drought and tree neighbours. Journal of Ecology, 2018, 106, 2043-2057.	4.0	39
71	Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia, 2016, 182, 529-537.	2.0	38
72	Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biology and Biochemistry, 2020, 148, 107864.	8.8	37

#	Article	IF	CITATIONS
73	Physiological significance of forest tree defoliation: Results from a survey in a mixed forest in Tuscany (central Italy). Forest Ecology and Management, 2016, 361, 170-178.	3.2	35
74	Modelling response of insect trap captures to pheromone dose. Ecological Modelling, 2006, 197, 247-257.	2.5	34
75	Response of insect parasitism to elevation depends on host and parasitoid life-history strategies. Biology Letters, 2013, 9, 20130028.	2.3	34
76	Inter-tree variability in the induced defense reaction of Scots pine to single inoculations by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. Forest Ecology and Management, 1993, 59, 257-270.	3.2	31
77	Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought. Journal of Ecology, 2020, 108, 1511-1522.	4.0	31
78	INDIVIDUAL VARIABILITY OF THE FLIGHT POTENTIAL OF <i>IPS SEXDENTATUS</i> BOERN. (COLEOPTERA:) Tj ETQqO 1993, 125, 919-930.	0 0 0 rgBT 0.8	/Overlock 1 29
79	Improving the Efficiency of Lepidopteran Pest Detection and Surveillance: Constraints and Opportunities for Multiple-Species Trapping. Journal of Chemical Ecology, 2013, 39, 50-58.	1.8	29
80	Deciduous trees increase bat diversity at stand and landscape scales in mosaic pine plantations. Landscape Ecology, 2016, 31, 291-300.	4.2	29
81	Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 0, 58, 107-127.	1.0	28
82	Community genetics in the time of nextâ€generation molecular technologies. Molecular Ecology, 2013, 22, 3198-3207.	3.9	25
83	Bird predation enhances tree seedling resistance to insect herbivores in contrasting forest habitats. Oecologia, 2012, 168, 415-424.	2.0	24
84	Carabid activityâ€density increases with forest vegetation diversity at different spatial scales. Insect Conservation and Diversity, 2020, 13, 36-46.	3.0	24
85	Changes in quantitative patterns of dead wood in maritime pine plantations over time. Forest Ecology and Management, 2008, 256, 913-921.	3.2	23
86	Influence of surrounding vegetation on insect herbivory: A matter of spatial scale and herbivore specialisation. Basic and Applied Ecology, 2012, 13, 458-465.	2.7	23
87	Effect of temperature on the reproductive success, developmental rate and brood characteristics of <i><scp>I</scp>ps sexdentatus</i> (<scp>B</scp> oern.). Agricultural and Forest Entomology, 2017, 19, 23-33.	1.3	23
88	The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere, 2017, 8, e01637.	2.2	21
89	Plant neighbour identity and invasive pathogen infection affect associational resistance to an invasive gall wasp. Biological Invasions, 2018, 20, 1459-1473.	2.4	21
90	Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182193.	2.6	21

#	Article	IF	CITATIONS
91	A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera:) Tj ETQq1 1 0.7843	814.rgBT 2.4	/Oyerlock I(21
92	Impact of Stand and Landscape Management on Forest Pest Damage. Annual Review of Entomology, 2022, 67, 181-199.	11.8	21
93	Drought and plant neighbourhood interactively determine herbivore consumption and performance. Scientific Reports, 2018, 8, 5930.	3.3	20
94	Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecological Modelling, 2019, 402, 85-92.	2.5	20
95	Insect herbivores should follow plants escaping their relatives. Oecologia, 2014, 176, 521-532.	2.0	19
96	A novel, easy method for estimating pheromone trap attraction range: application to the pine sawyer beetle <i>Monochamus galloprovincialis</i> . Agricultural and Forest Entomology, 2019, 21, 8-14.	1.3	19
97	Tree diversity drives associational resistance to herbivory at both forest edge and interior. Ecology and Evolution, 2019, 9, 9040-9051.	1.9	18
98	Tree species richness and water availability interact to affect soil microbial processes. Soil Biology and Biochemistry, 2021, 155, 108180.	8.8	18
99	Insect – Tree Interactions in Thaumetopoea pityocampa. , 2015, , 265-310.		18
100	The Risk of Bark and Ambrosia Beetles Associated with Imported Non-Coniferous Wood and Potential Horizontal Phytosanitary Measures. Forests, 2020, 11, 342.	2.1	17
101	Preventing invasions of Asian longhorn beetle and citrus longhorn beetle: are we on the right track?. Journal of Pest Science, 2022, 95, 41-66.	3.7	17
102	Associational resistance to a pest insect fades with time. Journal of Pest Science, 2020, 93, 427-437.	3.7	16
103	Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Clobal Ecology and Biogeography, 2022, 31, 872-885.	5.8	16
104	Above―and belowâ€ground complementarity rather than selection drive tree diversity–productivity relationships in European forests. Functional Ecology, 2021, 35, 1756-1767.	3.6	15
105	Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores' enemies. Basic and Applied Ecology, 2022, 58, 130-138.	2.7	15
106	Biology and rearing of <i>Pseudocoremia suavis</i> , an endemic looper (Lepidoptera: Geometridae) with a history of outbreaks on exotic conifers. New Zealand Entomologist, 2004, 27, 73-82.	0.3	14
107	Woodland habitat quality prevails over fragmentation for shaping butterfly diversity in deciduous forest remnants. Forest Ecology and Management, 2015, 357, 171-180.	3.2	14
108	The Evolutionary Legacy of Diversification Predicts Ecosystem Function. American Naturalist, 2016, 188, 398-410.	2.1	14

#	Article	IF	CITATIONS
109	Using forest gap models and experimental data to explore long-term effects of tree diversity on the productivity of mixed planted forests. Annals of Forest Science, 2020, 77, 1.	2.0	14
110	Tree diversity reduces pine infestation by mistletoe. Forest Ecology and Management, 2019, 449, 117470.	3.2	13
111	Host range expansion is density dependent. Oecologia, 2016, 182, 779-788.	2.0	12
112	Geographical variation in climatic drivers of the pine processionary moth population dynamics. Forest Ecology and Management, 2017, 404, 141-155.	3.2	12
113	Canopy composition and drought shape understorey plant assemblages in a young tree diversity experiment. Journal of Vegetation Science, 2020, 31, 803-816.	2.2	12
114	Climate affects neighbourâ€induced changes in leaf chemical defences and tree diversity–herbivory relationships. Functional Ecology, 2021, 35, 67-81.	3.6	12
115	Infestation dynamics of Dioryctria sylvestrella (Ratz.) (Lepidoptera: Pyralidae) in pruned maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 1994, 67, 11-22.	3.2	11
116	Temporal trends in tree defoliation and response to multiple biotic and abiotic stresses. Forest Ecology and Management, 2020, 477, 118476.	3.2	11
117	Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success?. NeoBiota, 0, 65, 169-191.	1.0	11
118	Egg mortality in the pine processionary moth: habitat diversity, microclimate and predation effects. Agricultural and Forest Entomology, 2014, 16, 284-292.	1.3	10
119	Potential effects of climate warming on the survivorship of adult <i>Monochamus galloprovincialis</i> . Agricultural and Forest Entomology, 2017, 19, 192-199.	1.3	10
120	Fungal endophyte communities differ between chestnut galls and surrounding foliar tissues. Fungal Ecology, 2019, 42, 100876.	1.6	10
121	Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood. Soil Biology and Biochemistry, 2014, 78, 204-212.	8.8	9
122	Phylogeography of the ladybird Iberorhyzobius rondensis, a potential biological control agent of the invasive alien pine bast scale Matsucoccus feytaudi. BioControl, 2015, 60, 59-69.	2.0	9
123	Effectiveness of clearâ€cuttings in nonâ€fragmented pine forests in relation toÂEU regulations for the eradication of the pine wood nematode. Journal of Applied Ecology, 2020, 57, 460-466.	4.0	9
124	The Effects of Poplar Plantations on Vascular Plant Diversity in Riparian Landscapes. Forests, 2016, 7, 50.	2.1	8
125	How do trees respond to species mixing in experimental compared to observational studies?. Ecology and Evolution, 2019, 9, 11254-11265.	1.9	8
126	Interactive Effects of Tree Mixing and Drought on a Primary Forest Pest. Frontiers in Forests and Global Change, 2019, 2, .	2.3	8

#	Article	IF	CITATIONS
127	Climatic conditions, not above- and belowground resource availability and uptake capacity, mediate tree diversity effects on productivity and stability. Science of the Total Environment, 2022, 812, 152560.	8.0	8
128	Plant neighbours mediate bird predation effects on arthropod abundance and herbivory. Ecological Entomology, 2013, 38, 448-455.	2.2	7
129	Disturbed habitats locally reduce the signal of deep evolutionary history in functional traits of plants. New Phytologist, 2021, 232, 1849-1862.	7.3	7
130	Changes in host basal area explain associational resistance of mixed forests to primary pests. Forest Ecology and Management, 2021, 495, 119374.	3.2	7
131	Effect of tree mixtures and water availability on belowground complementarity of fine roots of birch and pine planted on sandy podzol. Plant and Soil, 2020, 457, 437-455.	3.7	6
132	Plantation forests and biodiversity: oxymoron or opportunity?. Topics in Biodiversity and Conservation, 2008, , 1-27.	1.0	6
133	Can tree species richness attenuate the effect of drought on organic matter decomposition and stabilization in young plantation forests?. Acta Oecologica, 2018, 93, 30-40.	1.1	5
134	Modelling Monochamus galloprovincialis dispersal trajectories across a heterogeneous landscape to optimize monitoring by trapping networks. Landscape Ecology, 2021, 36, 931-941.	4.2	5
135	Combining phytochemicals and multitrophic interactions to control forest insect pests. Current Opinion in Insect Science, 2021, 44, 101-106.	4.4	5
136	Effects of mixing tree species and water availability on soil organic carbon stocks are depth dependent in a temperate podzol. European Journal of Soil Science, 2022, 73, .	3.9	5
137	Tree species identity and forest composition affect the number of oak processionary moth captured in pheromone traps and the intensity of larval defoliation. Agricultural and Forest Entomology, 2020, 22, 169-177.	1.3	4
138	Mixing beech with fir or pubescent oak does not help mitigate drought exposure at the limit of its climatic range. Forest Ecology and Management, 2021, 482, 118840.	3.2	4
139	Effects of tree mixture on forest productivity: tree species addition versus substitution. European Journal of Forest Research, 2022, 141, 165-175.	2.5	4
140	Forest Diversity Reduces the Prevalence of Pathogens Transmitted by the Tick Ixodes ricinus. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	3
141	Insect herbivory on urban trees: Complementary effects of tree neighbours and predation. , 0, 2, .		2
142	Host-mediated, cross-generational intraspecific competition in a herbivore species. , 0, 1, .		2
143	Multi-criteria analysis to compare multiple risks associated with management alternatives in planted forests. Forest Systems, 2020, 29, e004.	0.3	1