Wang-Xia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6273629/publications.pdf

Version: 2024-02-01

		117625	149698
57	10,548	34	56
papers	citations	h-index	g-index
(2)	(2	(2	1 / 1 2 1
63	63	63	14131
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218, 1-14.	3.2	2,937
2	Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9, 244-252.	8.8	2,358
3	The Expression of MicroRNA miR-107 Decreases Early in Alzheimer's Disease and May Accelerate Disease Progression through Regulation of \hat{l}^2 -Site Amyloid Precursor Protein-Cleaving Enzyme 1. Journal of Neuroscience, 2008, 28, 1213-1223.	3.6	745
4	The miR-15/107 Group of MicroRNA Genes: Evolutionary Biology, Cellular Functions, and Roles in Human Diseases. Journal of Molecular Biology, 2010, 402, 491-509.	4.2	337
5	MicroRNAs (miRNAs) in Neurodegenerative Diseases. Brain Pathology, 2008, 18, 130-138.	4.1	319
6	Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular Genetics and Metabolism, 2007, 91, 209-217.	1.1	302
7	Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter. Acta Neuropathologica, 2011, 121, 193-205.	7.7	299
8	Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death and Differentiation, 2021, 28, 1548-1562.	11.2	275
9	Receptor-Specific Signaling for Both the Alternative and the Canonical NF-κB Activation Pathways by NF-κB-Inducing Kinase. Immunity, 2004, 21, 477-489.	14.3	221
10	Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology, 2009, 71, 51-59.	3.9	211
11	MiR-107 is Reduced in Alzheimer's Disease Brain Neocortex: Validation Study. Journal of Alzheimer's Disease, 2010, 21, 75-79.	2.6	191
12	miR-107 Regulates Granulin/Progranulin with Implications for Traumatic Brain Injury and Neurodegenerative Disease. American Journal of Pathology, 2010, 177, 334-345.	3.8	175
13	Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathologica, 2013, 126, 161-177.	7.7	156
14	"New Old Pathologies― AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS). Journal of Neuropathology and Experimental Neurology, 2016, 75, 482-498.	1.7	130
15	Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Experimental Neurology, 2015, 265, 84-93.	4.1	127
16	Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99, 153-159.	5 . 2	115
17	A Study of Small RNAs from Cerebral Neocortex of Pathology-Verified Alzheimer's Disease, Dementia with Lewy Bodies, Hippocampal Sclerosis, Frontotemporal Lobar Dementia, and Non-Demented Human Controls. Journal of Alzheimer's Disease, 2013, 35, 335-348.	2.6	110
18	Alzheimer's disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathology, 2019, 29, 3-17.	4.1	110

#	Article	IF	Citations
19	miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Molecular Neurodegeneration, 2016, 11, 55.	10.8	106
20	A simple array platform for microRNA analysis and its application in mouse tissues. Rna, 2007, 13, 1803-1822.	3.5	101
21	Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. Rna, 2010, 16, 394-404.	3.5	91
22	Characterization of SP1, a Stress-Responsive, Boiling-Soluble, Homo-Oligomeric Protein from Aspen. Plant Physiology, 2002, 130, 865-875.	4.8	85
23	Technical variables in high-throughput miRNA expression profiling: Much work remains to be done. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 758-765.	1.9	85
24	Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Molecular Biology Reporter, 1997, 15, 219-235.	1.8	75
25	The Structural Basis of the Thermostability of SP1, a Novel Plant (Populus tremula) Boiling Stable Protein. Journal of Biological Chemistry, 2004, 279, 51516-51523.	3.4	73
26	ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathologica, 2014, 127, 825-843.	7.7	70
27	Focus on RNA isolation: Obtaining RNA for microRNA (miRNA) expression profiling analyses of neural tissue. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 749-757.	1.9	65
28	ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Research Reviews, 2015, 24, 111-125.	10.9	60
29	Individual microRNAs (miRNAs) display distinct mRNA targeting "rules― RNA Biology, 2010, 7, 373-380.	3.1	55
30	Expression of miR-15/107 Family MicroRNAs in Human Tissues and Cultured Rat Brain Cells. Genomics, Proteomics and Bioinformatics, 2014, 12, 19-30.	6.9	55
31	Dysregulation of the Mitogen Granulin in Human Cancer through the miR-15/107 microRNA Gene Group. Cancer Research, 2010, 70, 9137-9142.	0.9	50
32	Reassessment of Risk Genotypes (<i>GRN</i> , <i>TMEM106B</i> , and <i>ABCC9</i> Variants) Associated With Hippocampal Sclerosis of Aging Pathology. Journal of Neuropathology and Experimental Neurology, 2015, 74, 75-84.	1.7	50
33	Specific sequence determinants of miR-15/107 microRNA gene group targets. Nucleic Acids Research, 2011, 39, 8163-8172.	14.5	49
34	Aspen SP1, an exceptional thermal, protease and detergent-resistant self-assembled nano-particle. Biotechnology and Bioengineering, 2006, 95, 161-168.	3.3	36
35	Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathologica, 2016, 132, 841-858.	7.7	28
36	TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiology of Disease, 2019, 125, 67-76.	4.4	25

#	Article	lF	CITATIONS
37	MicroRNA expression patterns in human anterior cingulate and motor cortex: A study of dementia with Lewy bodies cases and controls. Brain Research, 2018, 1678, 374-383.	2.2	23
38	Detergent Insoluble Proteins and Inclusion Body-Like Structures Immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the Amygdala of Cognitively Impaired Elderly Persons. Journal of Neuropathology and Experimental Neurology, 2018, 77, 21-39.	1.7	21
39	High-throughput experimental studies to identify miRNA targets directly, with special focus on the mammalian brain. Brain Research, 2010, 1338, 122-130.	2.2	20
40	Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regeneration Research, 2021, 16, 514.	3.0	20
41	Mitochondria and microRNA crosstalk in traumatic brain injury. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 73, 104-108.	4.8	19
42	Alzheimer Disease Pathology-Associated Polymorphism in a Complex Variable Number of Tandem Repeat Region Within the MUC6 Gene, Near the AP2A2 Gene. Journal of Neuropathology and Experimental Neurology, 2020, 79, 3-21.	1.7	19
43	The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs. Molecular Neurobiology, 2020, 57, 2996-3013.	4.0	19
44	Novel human <i>ABCC9/SUR2</i> brainâ€expressed transcripts and an eQTL relevant to hippocampal sclerosis of aging. Journal of Neurochemistry, 2015, 134, 1026-1039.	3.9	18
45	Role of mitochondria in regulating microRNA activity and its relevance to the central nervous system. Neural Regeneration Research, 2015, 10, 1026.	3.0	17
46	A Customized Quantitative PCR MicroRNA Panel Provides a Technically Robust Context for Studying Neurodegenerative Disease Biomarkers and Indicates a High Correlation Between Cerebrospinal Fluid and Choroid Plexus MicroRNA Expression. Molecular Neurobiology, 2017, 54, 8191-8202.	4.0	16
47	Crystallization and preliminary X-ray crystallographic analysis of SP1, a novel chaperone-like protein. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 512-514.	2.5	13
48	MicroRNAs as Biomarkers for Predicting Complications following Aneurysmal Subarachnoid Hemorrhage. International Journal of Molecular Sciences, 2021, 22, 9492.	4.1	11
49	Enforced lysosomal biogenesis rescues erythromycin- and clindamycin-induced mitochondria-mediated cell death in human cells. Molecular and Cellular Biochemistry, 2019, 461, 23-36.	3.1	10
50	Modulating Thyroid Hormone Levels in Adult Mice: Impact on Behavior and Compensatory Brain Changes. Journal of Thyroid Research, 2021, 2021, 1-13.	1.3	9
51	Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99, 153-159.	5.2	7
52	A Highly Predictive MicroRNA Panel for Determining Delayed Cerebral Vasospasm Risk Following Aneurysmal Subarachnoid Hemorrhage. Frontiers in Molecular Biosciences, 2021, 8, 657258.	3.5	7
53	Apolipoprotein E Proteinopathy Is a Major Dementia-Associated Pathologic Biomarker in Individuals with or without the APOE Epsilon 4 Allele. American Journal of Pathology, 2022, 192, 564-578.	3.8	6
54	Methodology for Subcellular Fractionation and MicroRNA Examination of Mitochondria, Mitochondria Associated ER Membrane (MAM), ER, and Cytosol from Human Brain. Methods in Molecular Biology, 2020, 2063, 139-154.	0.9	5

#	Article	IF	CITATIONS
55	Sex-Specific Alterations in Inflammatory MicroRNAs in Mouse Brain and Bone Marrow CD11b+ Cells Following Traumatic Brain Injury. Cellular and Molecular Neurobiology, 2023, 43, 423-429.	3.3	4
56	Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana., 2009, 71, 51.		1
57	Micromanaging Memory. Biological Psychiatry, 2018, 83, 390-392.	1.3	O