
Marija Drndić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6273567/publications.pdf Version: 2024-02-01

Μλαιιλ Πανισιät

#	Article	IF	CITATIONS
1	Angstrom-Size Defect Creation and Ionic Transport through Pores in Single-Layer MoS ₂ . Nano Letters, 2018, 18, 1651-1659.	9.1	129
2	Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Current Opinion in Biotechnology, 2019, 55, 124-133.	6.6	70
3	Single-Stranded DNA Translocation Recordings through Solid-State Nanopores on Glass Chips at 10 MHz Measurement Bandwidth. ACS Nano, 2019, 13, 10545-10554.	14.6	64
4	Irradiation of Transition Metal Dichalcogenides Using a Focused Ion Beam: Controlled Singleâ€Atom Defect Creation. Advanced Functional Materials, 2019, 29, 1904668.	14.9	63
5	Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements. ACS Nano, 2020, 14, 6715-6728.	14.6	54
6	Spatial defects nanoengineering for bipolar conductivity in MoS2. Nature Communications, 2020, 11, 3463.	12.8	41
7	lons and Water Dancing through Atom-Scale Holes: A Perspective toward "Size Zero― ACS Nano, 2020, 14, 3736-3746.	14.6	39
8	Signal and Noise in FET-Nanopore Devices. ACS Sensors, 2018, 3, 313-319.	7.8	30
9	Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals. Nano Letters, 2019, 19, 1090-1097.	9.1	27
10	Stochastic Ionic Transport in Single Atomic Zero-Dimensional Pores. ACS Nano, 2020, 14, 11831-11845.	14.6	27
11	Centimeter-Scale Nanoporous 2D Membranes and Ion Transport: Porous MoS ₂ Monolayers in a Few-Layer Matrix. Nano Letters, 2019, 19, 392-399.	9.1	25
12	Gas flow through atomic-scale apertures. Science Advances, 2020, 6, .	10.3	22
13	Detection of single analyte and environmental samples with silicon nitride nanopores: Antarctic dirt particulates and DNA in artificial seawater. Review of Scientific Instruments, 2020, 91, 031301.	1.3	18
14	Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS ₂ Nanopores. Journal of Physical Chemistry B, 2019, 123, 2342-2353.	2.6	15
15	<i>In Situ</i> 2D MoS ₂ Field-Effect Transistors with an Electron Beam Gate. ACS Nano, 2020, 14, 7389-7397.	14.6	10
16	Transmission Electron Microscope Nanosculpting of Topological Insulator Bismuth Selenide. ACS Nano, 2018, 12, 6949-6955.	14.6	9
17	Engineering adjustable two-pore devices for parallel ion transport and DNA translocations. Journal of Chemical Physics, 2021, 154, 105102.	3.0	9
18	Devices for Nanoscale Guiding of DNA through a 2D Nanopore. ACS Sensors, 2021, 6, 2534-2545.	7.8	8

#	Article	IF	CITATIONS
19	Controlled doping of graphene by impurity charge compensation via a polarized ferroelectric polymer. Journal of Applied Physics, 2020, 127, .	2.5	6
20	Proteinâ€enabled detection of ibuprofen and sulfamethoxazole using solidâ€state nanopores. Proteomics, 2022, 22, e2100071.	2.2	4