Sean M Grimmond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272893/publications.pdf

Version: 2024-02-01

242 papers 47,938 citations

85 h-index 209 g-index

260 all docs

260 docs citations

260 times ranked 72083 citing authors

#	Article	IF	CITATIONS
1	Clinical utility of whole-genome sequencing in precision oncology. Seminars in Cancer Biology, 2022, 84, 32-39.	4.3	35
2	Analytical demands to use whole-genome sequencing in precision oncology. Seminars in Cancer Biology, 2022, 84, 16-22.	4.3	22
3	Clinical interpretation of whole-genome and whole-transcriptome sequencing for precision oncology. Seminars in Cancer Biology, 2022, 84, 23-31.	4.3	10
4	Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. Gastroenterology, 2022, 162, 320-324.e4.	0.6	26
5	qmotif: determination of telomere content from whole-genome sequence data. Bioinformatics Advances, 2022, 2, .	0.9	5
6	Enhancer retargeting of <i>CDX2</i> and <i>UBTF::ATXN7L3</i> define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood, 2022, 139, 3519-3531.	0.6	20
7	Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Medicine, 2022, 14, .	3.6	24
8	DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 2021, 4, 155.	2.0	26
9	Novel RET Fusion <i>RET-SEPTIN9</i> Predicts Response to Selective RET Inhibition With Selpercatinib in Malignant Pheochromocytoma. JCO Precision Oncology, 2021, 5, 1160-1165.	1.5	7
10	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	4.7	23
11	PRMT5: An Emerging Target for Pancreatic Adenocarcinoma. Cancers, 2021, 13, 5136.	1.7	11
12	The Diverse Applications of Pancreatic Ductal Adenocarcinoma Organoids. Cancers, 2021, 13, 4979.	1.7	9
13	ROR1 and ROR2 expression in pancreatic cancer. BMC Cancer, 2021, 21, 1199.	1.1	4
14	Sex differences in oncogenic mutational processes. Nature Communications, 2020, 11, 4330.	5.8	60
15	RAF1 rearrangements are common in pancreatic acinar cell carcinomas. Modern Pathology, 2020, 33, 1811-1821.	2.9	19
16	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	2.9	78
17	Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nature Communications, 2019, 10, 2723.	5 . 8	126
18	Setting CAGE Tags in a Genomic Context. , 2019, , 93-100.		O

#	Article	IF	CITATIONS
19	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	0.6	119
20	Telomere sequence content can be used to determine ALT activity in tumours. Nucleic Acids Research, 2018, 46, 4903-4918.	6.5	40
21	Homologous Recombination DNA Repair Pathway Disruption and Retinoblastoma Protein Loss Are Associated with Exceptional Survival in High-Grade Serous Ovarian Cancer. Clinical Cancer Research, 2018, 24, 569-580.	3.2	79
22	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 2018, 67, 2142-2155.	6.1	100
23	Exome-Wide Association Study of Pancreatic Cancer Risk. Gastroenterology, 2018, 154, 719-722.e3.	0.6	38
24	$\mbox{\sc i} \times \mbox{\sc BRAF} < \mbox{\sc i} \mbox{\sc Nutations}$ in Low-Grade Serous Ovarian Cancer and Response to BRAF Inhibition. JCO Precision Oncology, 2018, 2, 1-14.	1.5	19
25	Recurrent loss of heterozygosity correlates with clinical outcome in pancreatic neuroendocrine cancer. Npj Genomic Medicine, 2018, 3, 18.	1.7	37
26	Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 2017, 543, 65-71.	13.7	716
27	Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nature Genetics, 2017, 49, 825-833.	9.4	55
28	Whole-genome landscapes of major melanoma subtypes. Nature, 2017, 545, 175-180.	13.7	1,068
29	Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism, 2017, 5, 2.	2.4	51
30	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	7.7	1,428
31	<i>EIF1AX</i> and <i>NRAS</i> Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Research, 2017, 77, 4268-4278.	0.4	56
32	Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Medicine, 2017, 9, 41.	3.6	27
33	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	0.6	174
34	Whole exome sequencing in patients with white matter abnormalities. Annals of Neurology, 2016, 79, 1031-1037.	2.8	116
35	Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nature Genetics, 2016, 48, 1131-1141.	9.4	332
36	Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature, 2016, 534, 341-346.	13.7	204

#	Article	IF	CITATIONS
37	Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma. Carcinogenesis, 2016, 37, 356-365.	1.3	46
38	Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation. Cell Reports, 2016, 14, 907-919.	2.9	107
39	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	13.7	2,700
40	Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. Journal of Pathology, 2015, 237, 363-378.	2.1	98
41	Whole–genome characterization of chemoresistant ovarian cancer. Nature, 2015, 521, 489-494.	13.7	1,206
42	A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nature Communications, 2015, 6, 10001.	5.8	266
43	Pancreatic cancer genomics: where can the science take us?. Clinical Genetics, 2015, 88, 213-219.	1.0	13
44	Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518, 495-501.	13.7	2,132
45	PGTools: A Software Suite for Proteogenomic Data Analysis and Visualization. Journal of Proteome Research, 2015, 14, 2255-2266.	1.8	52
46	New <i>RAS</i> -Mutant Pancreatic Adenocarcinoma With Combined BRAF and MEK Inhibition for Metastatic Melanoma. Journal of Clinical Oncology, 2015, 33, e52-e56.	0.8	28
47	Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. Clinical Cancer Research, 2015, 21, 2029-2037.	3.2	209
48	A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nature Communications, 2015, 6, 7828.	5.8	117
49	Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nature Genetics, 2015, 47, 73-77.	9.4	130
50	SOX9 regulates ERBB signalling in pancreatic cancer development. Gut, 2015, 64, 1790-1799.	6.1	71
51	Towards the Systematic Mapping and Engineering of the Protein Prenylation Machinery in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0120716.	1.1	20
52	Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib. PLoS ONE, 2015, 10, e0125232.	1.1	27
53	Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data. PLoS ONE, 2015, 10, e0126911.	1.1	42
54	Abstract PRO6: The ampullary adenocarcinoma, its molecular characterization and differentiation from the pancreatic ductal adenocarcinoma, duodenal adenocarcinoma, and cholangiocarcinoma. , $2015, \dots$		0

#	Article	IF	CITATIONS
55	SnapShot-Seq: A Method for Extracting Genome-Wide, In Vivo mRNA Dynamics from a Single Total RNA Sample. PLoS ONE, 2014, 9, e89673.	1.1	53
56	Rapid Identification of a Novel Complex I MT-ND3 m.10134C> A Mutation in a Leigh Syndrome Patient. PLoS ONE, 2014, 9, e104879.	1.1	5
57	A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing. BioTechniques, 2014, 57, 31-38.	0.8	0
58	PRMT2 and $ROR\hat{I}^3$ Expression Are Associated With Breast Cancer Survival Outcomes. Molecular Endocrinology, 2014, 28, 1166-1185.	3.7	45
59	Stratified Medicine for Pancreatic Cancer. , 2014, , 807-814.		O
60	Clinical and pathologic features of familial pancreatic cancer. Cancer, 2014, 120, 3669-3675.	2.0	53
61	Can we move towards personalised pancreatic cancer therapy?. Expert Review of Gastroenterology and Hepatology, 2014, 8, 335-338.	1.4	5
62	Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nature Communications, 2014, 5, 5750.	5.8	94
63	Small RNA changes en route to distinct cellular states of induced pluripotency. Nature Communications, 2014, 5, 5522.	5.8	54
64	Divergent reprogramming routes lead to alternative stem-cell states. Nature, 2014, 516, 192-197.	13.7	123
65	Genome-wide characterization of the routes to pluripotency. Nature, 2014, 516, 198-206.	13.7	187
66	Genomeâ€wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLITâ€ROBO, ITGA2 and MET signaling. International Journal of Cancer, 2014, 135, 1110-1118.	2.3	192
67	An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nature Communications, 2014, 5, 5619.	5.8	108
68	Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks. Nature Communications, 2014, 5, 5613.	5.8	45
69	Targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63, 1481-1489.	6.1	107
70	Gemcitabine and CHK1 Inhibition Potentiate EGFR-Directed Radioimmunotherapy against Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2014, 20, 3187-3197.	3.2	32
71	Minor class splicing shapes the zebrafish transcriptome during development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3062-3067.	3.3	64
72	Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biology, 2014, 15, R51.	13.9	111

#	Article	IF	Citations
73	Transcriptional switching in macrophages associated with the peritoneal foreign body response. Immunology and Cell Biology, 2014, 92, 518-526.	1.0	40
74	Mining the genomes of exceptional responders. Nature Reviews Cancer, 2014, 14, 291-292.	12.8	38
75	Mutant p53 Drives Pancreatic Cancer Metastasis through Cell-Autonomous PDGF Receptor \hat{l}^2 Signaling. Cell, 2014, 157, 382-394.	13.5	412
76	Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood, 2014, 123, 2682-2690.	0.6	103
77	In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale?. Journal of Antimicrobial Chemotherapy, 2014, 69, 363-367.	1.3	17
78	Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nature Communications, 2014, 5, 5224.	5. 8	236
79	Returning individual research results for genome sequences of pancreatic cancer. Genome Medicine, 2014, 6, 42.	3.6	25
80	Pancreatic cancer genomics. Current Opinion in Genetics and Development, 2014, 24, 74-81.	1.5	50
81	Identification of a Novel de Novo p.Phe932lle KCNT1 Mutation in a Patient With Leukoencephalopathy and Severe Epilepsy. Pediatric Neurology, 2014, 50, 112-114.	1.0	62
82	10. Clinicopathological features of HER2 amplified pancreatic cancer. Pathology, 2014, 46, S109-S110.	0.3	0
83	Abstract 1715: Elucidating mechanisms of resistance to FGFR inhibitors in endometrial cancer. , 2014, , .		0
84	Abstract LB-73: SOX9 regulates EGFR/ERBB signaling in pancreatic cancer., 2014,,.		0
85	Understanding pancreatic cancer genomes. Journal of Hepato-Biliary-Pancreatic Sciences, 2013, 20, 549-556.	1.4	31
86	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
87	Mutations in DARS Cause Hypomyelination with Brain Stem and Spinal Cord Involvement and Leg Spasticity. American Journal of Human Genetics, 2013, 92, 774-780.	2.6	151
88	A De Novo Mutation in the \hat{I}^2 -Tubulin Gene TUBB4A Results in the Leukoencephalopathy Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum. American Journal of Human Genetics, 2013, 92, 767-773.	2.6	174
89	Assessment of transcript reconstruction methods for RNA-seq. Nature Methods, 2013, 10, 1177-1184.	9.0	679
90	Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Medicine, 2013, 5, 78.	3.6	97

#	Article	IF	Citations
91	Novel cancer drivers: mining the kinome. Genome Medicine, 2013, 5, 19.	3.6	3
92	Neuropilin-2 Promotes Extravasation and Metastasis by Interacting with Endothelial $\hat{l}\pm 5$ Integrin. Cancer Research, 2013, 73, 4579-4590.	0.4	97
93	Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Reports, 2013, 4, 238-247.	2.9	56
94	Integration-Free Induced Pluripotent Stem Cells Model Genetic and Neural Developmental Features of Down Syndrome Etiology. Stem Cells, 2013, 31, 467-478.	1.4	144
95	Identification of Unsafe Human Induced Pluripotent Stem Cell Lines Using a Robust Surrogate Assay for Pluripotency. Stem Cells, 2013, 31, 1498-1510.	1.4	22
96	miR-139-5p is a regulator of metastatic pathways in breast cancer. Rna, 2013, 19, 1767-1780.	1.6	137
97	MicroRNA-182-5p targets a network of genes involved in DNA repair. Rna, 2013, 19, 230-242.	1.6	108
98	Characterization of an <i>ntrX</i> Mutant of Neisseria gonorrhoeae Reveals a Response Regulator That Controls Expression of Respiratory Enzymes in Oxidase-Positive Proteobacteria. Journal of Bacteriology, 2013, 195, 2632-2641.	1.0	36
99	MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. Biology of Reproduction, 2013, 88, 143-143.	1.2	68
100	Proteogenomic Analysis of Bradyrhizobium japonicum USDA110 Using Genosuite, an Automated Multi-algorithmic Pipeline. Molecular and Cellular Proteomics, 2013, 12, 3388-3397.	2.5	39
101	Somatic Point Mutation Calling in Low Cellularity Tumors. PLoS ONE, 2013, 8, e74380.	1.1	67
102	Whole Genome Sequence Analysis of the First Australian OXA-48-Producing Outbreak-Associated Klebsiella pneumoniae Isolates: The Resistome and In Vivo Evolution. PLoS ONE, 2013, 8, e59920.	1.1	69
103	Stromal Protein Ecm1 Regulates Ureteric Bud Patterning and Branching. PLoS ONE, 2013, 8, e84155.	1.1	33
104	Abstract A75: The IMPaCT trial: Individualised Molecular Pancreatic Cancer Therapy. A pilot, randomized, open label Phase II trial assessing first line treatment with gemcitabine or personalized treatment based on tumour molecular signature in patients with metastatic pancreatic cancer , 2013,		0
105	PINA v2.0: mining interactome modules. Nucleic Acids Research, 2012, 40, D862-D865.	6.5	321
106	Carriage of an ACME II Variant May Have Contributed to Methicillin-Resistant Staphylococcus aureus Sequence Type 239-Like Strain Replacement in Liverpool Hospital, Sydney, Australia. Antimicrobial Agents and Chemotherapy, 2012, 56, 3380-3383.	1.4	41
107	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486, 266-270.	13.7	297
108	Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development (Cambridge), 2012, 139, 1863-1873.	1.2	51

#	Article	IF	CITATIONS
109	<i>Sleeping Beauty</i> mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5934-5941.	3.3	201
110	RON is not a prognostic marker for resectable pancreatic cancer. BMC Cancer, 2012, 12, 395.	1.1	17
111	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491, 399-405.	13.7	1,741
112	Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E944-53.	3.3	332
113	Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites. Nucleic Acids Research, 2012, 40, 7858-7869.	6.5	36
114	Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Research, 2012, 8, 58-73.	0.3	107
115	Identification of Novel Markers of Mouse Fetal Ovary Development. PLoS ONE, 2012, 7, e41683.	1.1	42
116	qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles. PLoS ONE, 2012, 7, e45835.	1.1	92
117	Abstract 5071: The genomic landscape of pancreatic cancer: from discovery to patient care., 2012,,.		0
118	Abstract LB-404: Genomic analysis reveals roles for chromatin modification and axon guidance in pancreatic cancer. , 2012 , , .		0
119	Interaction of c-Myb with p300 Is Required for the Induction of Acute Myeloid Leukemia by Human AML Oncogenes, and Represents a Potential Therapeutic Target Blood, 2012, 120, 2402-2402.	0.6	0
120	Sequencing transcriptomes in toto. Integrative Biology (United Kingdom), 2011, 3, 522.	0.6	16
121	MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biology, 2011, 12, R126.	13.9	297
122	Identification of Anchor Genes during Kidney Development Defines Ontological Relationships, Molecular Subcompartments and Regulatory Pathways. PLoS ONE, 2011, 6, e17286.	1.1	78
123	A High-Throughput Platform for Lentiviral Overexpression Screening of the Human ORFeome. PLoS ONE, 2011, 6, e20057.	1.1	43
124	Phasevarion Mediated Epigenetic Gene Regulation in Helicobacter pylori. PLoS ONE, 2011, 6, e27569.	1.1	116
125	Analysis of Brca1-deficient mouse mammary glands reveals reciprocal regulation of Brca1 and c-kit. Oncogene, 2011, 30, 1597-1607.	2.6	26
126	Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling. BMC Genomics, 2011, 12, 441.	1.2	27

#	Article	IF	CITATIONS
127	Deep-transcriptome and ribonome sequencing redefines the molecular networks of pluripotency and the extracellular space in human embryonic stem cells. Genome Research, 2011, 21, 2014-2025.	2.4	23
128	The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics, 2011, 27, 272-274.	1.8	64
129	X-MATE: a flexible system for mapping short read data. Bioinformatics, 2011, 27, 580-581.	1.8	11
130	Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Research and Treatment, 2010, 123, 661-677.	1.1	86
131	Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. Journal of Proteomics, 2010, 73, 899-916.	1.2	38
132	Vitamin C Promotes Widespread Yet Specific DNA Demethylation of the Epigenome in Human Embryonic Stem Cells Â. Stem Cells, 2010, 28, 1848-1855.	1.4	156
133	Ascorbate Promotes Epigenetic Activation of CD30 in Human Embryonic Stem Cells Â. Stem Cells, 2010, 28, 1782-1793.	1.4	41
134	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
135	Simplifying complexity. Nature Methods, 2010, 7, 793-795.	9.0	1
136	Profiling Gene Expression Induced by Protease-Activated Receptor 2 (PAR2) Activation in Human Kidney Cells. PLoS ONE, 2010, 5, e13809.	1.1	43
137	Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Research, 2010, 20, 1639-1650.	2.4	76
137	Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Research, 2010, 20, 1639-1650. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients. PLoS Genetics, 2010, 6, e1000850.	2.4	7 6
	Research, 2010, 20, 1639-1650. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1		
138	Research, 2010, 20, 1639-1650. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients. PLoS Genetics, 2010, 6, e1000850. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome	1.5	9
138	Research, 2010, 20, 1639-1650. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients. PLoS Genetics, 2010, 6, e1000850. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Research, 2010, 20, 1052-1063. Redirection of renal mesenchyme to stromal and chondrocytic fates in the presence of TGF-β2.	1.5 2.4	9
138 139 140	Research, 2010, 20, 1639-1650. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients. PLoS Genetics, 2010, 6, e1000850. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Research, 2010, 20, 1052-1063. Redirection of renal mesenchyme to stromal and chondrocytic fates in the presence of TGF-β2. Differentiation, 2010, 79, 272-284. Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation, 2010, 79,	1.5 2.4 1.0	9 180 6
138 139 140	Research, 2010, 20, 1639-1650. Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients. PLoS Genetics, 2010, 6, e1000850. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Research, 2010, 20, 1052-1063. Redirection of renal mesenchyme to stromal and chondrocytic fates in the presence of TGF-β2. Differentiation, 2010, 79, 272-284. Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation, 2010, 79, 232-243.	1.5 2.4 1.0	9 180 6 30

#	Article	IF	Citations
145	Subfractionation of Differentiating Human Embryonic Stem Cell Populations Allows the Isolation of a Mesodermal Population Enriched for Intermediate Mesoderm and Putative Renal Progenitors. Stem Cells and Development, 2010, 19, 1637-1648.	1.1	49
146	The clinical potential and challenges of sequencing cancer genomes for personalized medical genomics. IDrugs: the Investigational Drugs Journal, 2010, 13, 778-81.	0.7	2
147	Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH. PLoS ONE, 2009, 4, e5745.	1.1	27
148	A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells. PLoS ONE, 2009, 4, e7708.	1,1	139
149	Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria. PLoS Pathogens, 2009, 5, e1000400.	2.1	170
150	GUDMAP - An Online GenitoUrinary Resource. Nature Precedings, 2009, , .	0.1	0
151	Genome-Wide Identification of Long Noncoding RNAs in CD8+ T Cells. Journal of Immunology, 2009, 182, 7738-7748.	0.4	221
152	Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuMRescueLite. Bioinformatics, 2009, 25, 2613-2614.	1.8	41
153	NRED: a database of long noncoding RNA expression. Nucleic Acids Research, 2009, 37, D122-D126.	6.5	252
154	Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut, 2009, 58, 910-919.	6.1	94
155	RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data. Bioinformatics, 2009, 25, 2615-2616.	1.8	45
156	Identification of Human Embryonic Stem Cell Surface Markers by Combined Membrane-Polysome Translation State Array Analysis and Immunotranscriptional Profiling. Stem Cells, 2009, 27, 2446-2456.	1.4	72
157	Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 2009, 41, 572-578.	9.4	327
158	The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 2009, 41, 563-571.	9.4	731
159	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	9.4	408
160	Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution. Developmental Cell, 2009, 16, 482.	3.1	2
161	Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Developmental Biology, 2009, 332, 273-286.	0.9	221
162	07-P023 GUDMAP – An online genitourinary resource. Mechanisms of Development, 2009, 126, S143.	1.7	0

#	Article	IF	Citations
163	Genome Sequencing Approaches and Successes. Methods in Molecular Biology, 2009, 513, 345-358.	0.4	24
164	Setting CAGE Tags in a Genomic Context. , 2009, , 93-100.		0
165	Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers. Breast Cancer Research and Treatment, 2008, 112, 229-236.	1.1	20
166	Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nature Biotechnology, 2008, 26, 305-312.	9.4	111
167	Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods, 2008, 5, 613-619.	9.0	952
168	Transcriptome content and dynamics at single-nucleotide resolution. Genome Biology, 2008, 9, 234.	13.9	112
169	The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biology, 2008, 9, R127.	13.9	278
170	Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. Journal of Steroid Biochemistry and Molecular Biology, 2008, 112, 55-62.	1.2	16
171	A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics, 2008, 91, 281-288.	1.3	92
172	Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution. Developmental Cell, 2008, 15, 781-791.	3.1	196
173	Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 2008, 18, 1433-1445.	2.4	698
174	GUDMAP. Journal of the American Society of Nephrology: JASN, 2008, 19, 667-671.	3.0	225
175	BRCA1 and BRCA2 Missense Variants of High and Low Clinical Significance Influence Lymphoblastoid Cell Line Post-Irradiation Gene Expression. PLoS Genetics, 2008, 4, e1000080.	1.5	12
176	SEQUENCING THE TRANSCRIPTOME <i>IN TOTO</i> , 2008, , .		0
177	Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r–EGFP transgene reporter. Developmental Biology, 2007, 308, 232-246.	0.9	194
178	A global role for zebrafish klf4 in embryonic erythropoiesis. Mechanisms of Development, 2007, 124, 762-774.	1.7	50
179	Transcriptional analysis of early lineage commitment in human embryonic stem cells. BMC Developmental Biology, 2007, 7, 12.	2.1	84
180	Characterization of the OxyR regulon of Neisseria gonorrhoeae. Molecular Microbiology, 2007, 63, 54-68.	1.2	81

#	Article	IF	Citations
181	Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC Genomics, 2007, 8, 365.	1.2	63
182	Alternate transcription of the Toll-like receptor signaling cascade. Genome Biology, 2006, 7, R10.	13.9	66
183	Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biology, 2006, 7, R5.	13.9	48
184	Development of the Minimum Information Specification forIn SituHybridization and Immunohistochemistry Experiments (MISFISHIE). OMICS A Journal of Integrative Biology, 2006, 10, 205-208.	1.0	19
185	Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiological Genomics, 2006, 26, 116-124.	1.0	22
186	A global role for EKLF in definitive and primitive erythropoiesis. Blood, 2006, 107, 3359-3370.	0.6	182
187	Subcellular Localization of Mammalian Type II Membrane Proteins. Traffic, 2006, 7, 613-625.	1.3	19
188	PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Molecular Microbiology, 2006, 60, 401-416.	1.2	69
189	Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genetics, 2006, 38, 626-635.	9.4	1,201
190	Differential gene expression in the developing mouse ureter. Gene Expression Patterns, 2006, 6, 519-538.	0.3	10
191	Spatial gene expression in the T-stage mouse metanephros. Gene Expression Patterns, 2006, 6, 807-825.	0.3	37
192	PhosphoregDB: the tissue and sub-cellular distribution of mammalian protein kinases and phosphatases. BMC Bioinformatics, 2006, 7, 82.	1.2	18
193	Definition and spatial annotation of the dynamic secretome during early kidney development. Developmental Dynamics, 2006, 235, 1709-1719.	0.8	10
194	Characterization of the breast cancer associated ATM 7271T > G (V2424G) mutation by gene expression profiling. Genes Chromosomes and Cancer, 2006, 45, 1169-1181.	1.5	17
195	The Abundance of Short Proteins in the Mammalian Proteome. PLoS Genetics, 2006, 2, e52.	1.5	189
196	Temporal and spatial transcriptional programs in murine kidney development. Physiological Genomics, 2005, 23, 159-171.	1.0	64
197	The phasevarion: A genetic system controlling coordinated, random switching of expression of multiple genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5547-5551.	3.3	191
198	Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 2005, 16 , 11 - 19 .	2.4	461

#	Article	IF	Citations
199	The Transcriptional Landscape of the Mammalian Genome. Science, 2005, 309, 1559-1563.	6.0	3,227
200	Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mechanisms of Development, 2005, 122, 1218-1233.	1.7	89
201	Identifying the Molecular Phenotype of Renal Progenitor Cells. Journal of the American Society of Nephrology: JASN, 2004, 15, 2344-2357.	3.0	126
202	Anlaysis of complementary expression profiles following WT1 induction versus repression reveals the cholesterol/fatty acid synthetic pathways as a possible major target of WT1. Oncogene, 2004, 23, 3067-3079.	2.6	25
203	Identification of three gene candidates for multicellular resistance in colon carcinoma. Cytotechnology, 2004, 46, 9-18.	0.7	12
204	Effects of A1 adenosine receptor overexpression on normoxic and post-ischemic gene expression. Cardiovascular Research, 2003, 57, 715-726.	1.8	11
205	Mouse Proteome Analysis. Genome Research, 2003, 13, 1335-1344.	2.4	91
206	Systematic Characterization of the Zinc-Finger-Containing Proteins in the Mouse Transcriptome. Genome Research, 2003, 13, 1430-1442.	2.4	89
207	Analysis of the Mouse Transcriptome for Genes Involved in the Function of the Nervous System. Genome Research, 2003, 13, 1395-1401.	2.4	30
208	Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse. Genome Research, 2003, 13, 1443-1454.	2.4	43
209	Characterizing Embryonic Gene Expression Patterns in the Mouse Using Nonredundant Sequence-Based Selection. Genome Research, 2003, 13, 2609-2620.	2.4	27
210	The Mouse Secretome: Functional Classification of the Proteins Secreted Into the Extracellular Environment. Genome Research, 2003, 13, 1350-1359.	2.4	73
211	Exploration of the Cell-Cycle Genes Found Within the RIKEN FANTOM2 Data Set. Genome Research, 2003, 13, 1366-1375.	2.4	16
212	Generation of Diversity in the Innate Immune System: Macrophage Heterogeneity Arises from Gene-Autonomous Transcriptional Probability of Individual Inducible Genes. Journal of Immunology, 2002, 168, 44-50.	0.4	94
213	Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarray analysis. Journal of Plant Physiology, 2002, 159, 1361-1374.	1.6	39
214	Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells. Oncogene, 2002, 21, 8196-8205.	2.6	108
215	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	13.7	1,548
216	Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development. Mechanisms of Development, 2001, 102, 209-211.	1.7	44

#	Article	IF	Citations
217	Transcriptional responses to ischemia in A1AR transgenic and wild-type hearts. Journal of Molecular and Cellular Cardiology, 2001, 33, A6.	0.9	0
218	Expression Profiling with cDNA Microarrays: A User's Perspective and Guide. Principles and Practice, 2001, , 13-33.	0.3	0
219	Characterization of RasGRP2, a Plasma Membrane-targeted, Dual Specificity Ras/Rap Exchange Factor. Journal of Biological Chemistry, 2000, 275, 32260-32267.	1.6	109
220	Sexually dimorphic expression of protease nexin-1 and vanin-1 in the developing mouse gonad prior to overt differentiation suggests a role in mammalian sexual development. Human Molecular Genetics, 2000, 9, 1553-1560.	1.4	95
221	Cloning, Mapping, and Expression Analysis of a Gene Encoding a Novel Mammalian EGF-Related Protein (SCUBE1). Genomics, 2000, 70, 74-81.	1.3	72
222	Mice Lacking the Vascular Endothelial Growth Factor-B Gene (<i>Vegfb</i>) Have Smaller Hearts, Dysfunctional Coronary Vasculature, and Impaired Recovery From Cardiac Ischemia. Circulation Research, 2000, 86, E29-35.	2.0	250
223	A 500-kb Sequence-Ready Cosmid Contig and Transcript Map of the MEN1 Region on 11q13. Genomics, 1999, 55, 49-56.	1.3	3
224	Characterization of the mouse Men1 gene and its expression during development. Oncogene, 1998, 17, 2485-2493.	2.6	133
225	The search for theMEN1gene. Journal of Internal Medicine, 1998, 243, 441-446.	2.7	13
226	Characterisation of a New Human and Murine Member of the DnaJ Family of Proteins. Biochemical and Biophysical Research Communications, 1998, 243, 273-276.	1.0	4
227	The Mouse Y Chromosome Interval Necessary for Spermatogonial Proliferation is Gene Dense with Syntenic Homology to the Human AZFa Region. Human Molecular Genetics, 1998, 7, 1713-1724.	1.4	96
228	Mutation Analysis of the MEN1 Gene in Multiple Endocrine Neoplasia Type 1, Familial Acromegaly and Familial Isolated Hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2621-2626.	1.8	125
229	Analysis of the Promoter Region of the Human VEGF-Related Factor Gene. Biochemical and Biophysical Research Communications, 1997, 230, 413-418.	1.0	41
230	Construction of a 1.2-Mb Sequence-Ready Contig of Chromosome 11q13 Encompassing the Multiple Endocrine Neoplasia Type 1 (MEN1) Gene. Genomics, 1997, 44, 94-100.	1.3	31
231	Expression of the VEGF-Related Factor Gene in Pre- and Postnatal Mouse. Biochemical and Biophysical Research Communications, 1996, 220, 147-152.	1.0	23
232	Characterization of the Murine VEGF-Related Factor Gene. Biochemical and Biophysical Research Communications, 1996, 220, 922-928.	1.0	19
233	Cloning and characterization of a novel human gene related to vascular endothelial growth factor Genome Research, 1996, 6, 124-131.	2.4	123
234	Confirmation of a susceptibility locus on chromosome 13 in Australian breast cancer families. Human Genetics, 1996, 98, 80-85.	1.8	11

#	ARTICLE	IF	CITATION
235	Exclusion of the phosphoinositide-specific phospholipase C?3 (PLCB3) gene as a candidate for multiple endocrine neoplasia type 1. Human Genetics, 1996, 99, 130-132.	1.8	8
236	Exclusion of the 13-kDa rapamycin binding protein gene (FKBP2) as a candidate gene for multiple endocrine neoplasia type 1. Human Genetics, 1995, 95, 455-8.	1.8	14
237	Genomic organization and complete cDNA sequence of the human phosphoinositide-specific phospholipase C \hat{l}^2 3 gene (PLCB3). Genomics, 1995, 26, 467-472.	1.3	20
238	G Protein Mutations in Tumors of the Pituitary, Parathyroid and Endocrine Pancreas. Biochemical and Biophysical Research Communications, 1995, 211, 1063-1070.	1.0	13
239	The phospholipase C \hat{I}^2 3 gene located in the MEN1 region shows loss of expression in endocrine tumours. Human Molecular Genetics, 1994, 3, 1775-1781.	1.4	53
240	Multiple endocrine neoplasia type 1 (MEN1) in two Asian families. Human Genetics, 1994, 94, 468-72.	1.8	13
241	Detection of a rare point mutation in Ki-ras of a human bladder cancer xenograft by polymerase chain reaction and direct sequencing. Urological Research, 1992, 20, 121-126.	1.5	20
242	Tumour-induced host stromal-cell transformation: Induction of mouse spindle-cell fibrosarcoma not mediated by gene transfer. International Journal of Cancer, 1990, 46, 299-309.	2.3	19