
Patrick C Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6270973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming. Frontiers in Earth Science, 2022, 9, .	1.8	31
2	Constraining Arctic Climate Projections of Wintertime Warming With Surface Turbulent Flux Observations and Representation of Surface-Atmosphere Coupling. Frontiers in Earth Science, 2022, 10, .	1.8	6
3	Toward a more realistic representation of surface albedo in NASA CERES-derived surface radiative fluxes. Elementa, 2022, 10, .	3.2	7
4	On the Nature of the Arctic's Positive Lapseâ€Rate Feedback. Geophysical Research Letters, 2021, 48, e2020GL091109.	4.0	38
5	Satellite Perspectives of Sea Surface Temperature Diurnal Warming on Atmospheric Moistening and Radiative Heating during MJO. Journal of Climate, 2021, 34, 1203-1226.	3.2	3
6	The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations. Atmospheric Measurement Techniques, 2021, 14, 2673-2697.	3.1	7
7	Arctic Cloud Response to a Perturbation in Sea Ice Concentration: The North Water Polynya. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034409.	3.3	8
8	Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 11563-11580.	4.9	1
9	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	23.0	39
10	Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 2020, 10, 20-29.	18.8	424
11	A less cloudy picture of the inter-model spread in future global warming projections. Nature Communications, 2020, 11, 4472.	12.8	20
12	Trutinor: A Conceptual Study for a Next-Generation Earth Radiant Energy Instrument. Remote Sensing, 2020, 12, 3281.	4.0	2
13	Clouds damp the radiative impacts of polar sea ice loss. Cryosphere, 2020, 14, 2673-2686.	3.9	19
14	Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim. Climate Dynamics, 2019, 52, 2005-2016.	3.8	14
15	Arctic cloud annual cycle biases in climate models. Atmospheric Chemistry and Physics, 2019, 19, 8759-8782.	4.9	38
16	Seasonal Variations of Arctic Low‣evel Clouds and Its Linkage to Sea Ice Seasonal Variations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12206-12226.	3.3	22
17	Sensitivity of the Amazonian Convective Diurnal Cycle to Its Environment in Observations and Reanalysis. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,621.	3.3	7
18	Microphysical variability of Amazonian deep convective cores observed by CloudSat and simulated by a multi-scale modeling framework. Atmospheric Chemistry and Physics, 2018, 18, 6493-6510.	4.9	8

PATRICK C TAYLOR

#	Article	IF	CITATIONS
19	Local processes with a global reach. Nature Climate Change, 2018, 8, 1035-1036.	18.8	1
20	Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming. Nature Communications, 2018, 9, 5017.	12.8	73
21	Unmasking the negative greenhouse effect over the Antarctic Plateau. Npj Climate and Atmospheric Science, 2018, 1, 17.	6.8	7
22	The Unprecedented 2016–2017 Arctic Sea Ice Growth Season: The Crucial Role of Atmospheric Rivers and Longwave Fluxes. Geophysical Research Letters, 2018, 45, 5204-5212.	4.0	50
23	On the Increasing Importance of Air-Sea Exchanges in a Thawing Arctic: A Review. Atmosphere, 2018, 9, 41.	2.3	52
24	ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper. , 2018, n/a, .		25
25	The regional influence of the Arctic Oscillation and Arctic Dipole on the wintertime Arctic surface radiation budget and sea ice growth. Geophysical Research Letters, 2017, 44, 4341-4350.	4.0	26
26	Inter-Model Warming Projection Spread: Inherited Traits from Control Climate Diversity. Scientific Reports, 2017, 7, 4300.	3.3	14
27	Cloud object analysis of CERES Aqua observations of tropical and subtropical cloud regimes: Evolution of cloud object size distributions during the Madden–Julian Oscillation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188, 148-158.	2.3	3
28	Monthly covariability of Amazonian convective cloud properties and radiative diurnal cycle. AIP Conference Proceedings, 2017, , .	0.4	0
29	Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses. AIP Conference Proceedings, 2017, , .	0.4	0
30	Does a relationship between Arctic low clouds and sea ice matter?. AIP Conference Proceedings, 2017, ,	0.4	1
31	Arctic Radiation-IceBridge Sea and Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition. Bulletin of the American Meteorological Society, 2017, 98, 1399-1426.	3.3	17
32	Cloud Object Analysis of CERES Aqua Observations of Tropical and Subtropical Cloud Regimes: Four-Year Climatology. Journal of Climate, 2016, 29, 1617-1638.	3.2	10
33	On the sensitivity of the diurnal cycle in the Amazon to convective intensity. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8186-8208.	3.3	19
34	Evaluation of the Arctic surface radiation budget in CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8525-8548.	3.3	53
35	Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4404-4428.	3.3	7
36	A Lagrangian view of longwave radiative fluxes for understanding the direct heating response to a CO 2 increase. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6191-6214.	3.3	8

PATRICK C TAYLOR

#	Article	IF	CITATIONS
37	A Framework for Evaluating Climate Model Performance Metrics. Journal of Climate, 2016, 29, 1773-1782.	3.2	33
38	Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12656-12678.	3.3	84
39	Evaluation of the Tropical TOA Flux Diurnal Cycle in MERRA and ERA-Interim Retrospective Analyses. Journal of Climate, 2014, 27, 4781-4796.	3.2	20
40	Individual Feedback Contributions to the Seasonality of Surface Warming. Journal of Climate, 2014, 27, 5653-5669.	3.2	48
41	Variability of Regional TOA Flux Diurnal Cycle Composites at the Monthly Time Scale. Journals of the Atmospheric Sciences, 2014, 71, 3484-3498.	1.7	9
42	A Comparison of Climate Signal Trend Detection Uncertainty Analysis Methods. Journal of Climate, 2014, 27, 3363-3376.	3.2	15
43	Regional variation of the tropical water vapor and lapse rate feedbacks. Geophysical Research Letters, 2014, 41, 7634-7641.	4.0	11
44	A Decomposition of Feedback Contributions to Polar Warming Amplification. Journal of Climate, 2013, 26, 7023-7043.	3.2	206
45	Impact of Sun-Synchronous Diurnal Sampling on Tropical TOA Flux Interannual Variability and Trends. Journal of Climate, 2013, 26, 2184-2191.	3.2	14
46	Variability of Monthly Diurnal Cycle Composites of TOA Radiative Fluxes in the Tropics. Journals of the Atmospheric Sciences, 2013, 71, 754-766.	1.7	12
47	Achieving Climate Change Absolute Accuracy in Orbit. Bulletin of the American Meteorological Society, 2013, 94, 1519-1539.	3.3	239
48	Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing Diurnal Cycles from CERES. Journals of the Atmospheric Sciences, 2012, 69, 3652-3669.	1.7	45
49	The Role of Clouds: An Introduction and Rapporteur Report. Surveys in Geophysics, 2012, 33, 609-617.	4.6	6
50	Seasonal Variations of Climate Feedbacks in the NCAR CCSM3. Journal of Climate, 2011, 24, 3433-3444.	3.2	23
51	Detection of Atmospheric Changes in Spatially and Temporally Averaged Infrared Spectra Observed from Space. Journal of Climate, 2011, 24, 6392-6407.	3.2	19
52	Geographical Distribution of Climate Feedbacks in the NCAR CCSM3.0. Journal of Climate, 2011, 24, 2737-2753.	3.2	29
53	On the Use of Probability of Clear Line of Sight Models in Parameterizing Surface Downwelling Longwave Radiation in the Tropical Western Pacific. , 2009, , .		1
54	A Study of the Probability of Clear Line of Sight through Single-Layer Cumulus Cloud Fields in the Tropical Western Pacific. Journals of the Atmospheric Sciences, 2008, 65, 3497-3512.	1.7	13