David E Wentworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/627020/publications.pdf

Version: 2024-02-01

68 papers

4,611 citations

35 h-index 65 g-index

70 all docs

70 docs citations

70 times ranked

6709 citing authors

#	Article	IF	CITATIONS
1	Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. Npj Vaccines, 2021, 6, 59.	6.0	9
2	Susceptibility of widely diverse influenza a viruses to PB2 polymerase inhibitor pimodivir. Antiviral Research, 2021, 188, 105035.	4.1	15
3	Detection of baloxavir resistant influenza A viruses using next generation sequencing and pyrosequencing methods. Antiviral Research, 2020, 182, 104906.	4.1	13
4	Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. ELife, 2020, 9, .	6.0	35
5	Comparison of nucleic acid extraction methods for next-generation sequencing of avian influenza A virus from ferret respiratory samples. Journal of Virological Methods, 2019, 270, 95-105.	2.1	3
6	Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathogens, 2016, 12, e1005620.	4.7	48
7	Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses. Journal of Virology, 2016, 90, 5770-5784.	3.4	52
8	Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. Journal of Virological Methods, 2016, 227, 33-39.	2.1	11
9	Evolutionary Dynamics of Influenza A Viruses in US Exhibition Swine. Journal of Infectious Diseases, 2016, 213, 173-182.	4.0	28
10	Comparative <i>In Vitro</i> and <i>In Vivo</i> Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8]. Journal of Virology, 2016, 90, 142-151.	3.4	19
11	Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh. PLoS ONE, 2016, 11, e0152131.	2.5	41
12	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	3.4	29
13	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	2.9	12
14	Evolution of Influenza B Virus in Kuala Lumpur, Malaysia, between 1995 and 2008. Journal of Virology, 2015, 89, 9689-9692.	3.4	10
15	Spread and Persistence of Influenza A Viruses in Waterfowl Hosts in the North American Mississippi Migratory Flyway. Journal of Virology, 2015, 89, 5371-5381.	3.4	29
16	Equine and Canine Influenza H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. Journal of Virology, 2015, 89, 6860-6873.	3.4	36
17	Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data. Journal of General Virology, 2015, 96, 2050-2060.	2.9	23
18	Whole genome detection of rotavirus mixed infections in human, porcine and bovine samples co-infected with various rotavirus strains collected from sub-Saharan Africa. Infection, Genetics and Evolution, 2015, 31, 321-334.	2.3	42

#	Article	IF	CITATIONS
19	Global migration of influenza A viruses in swine. Nature Communications, 2015, 6, 6696.	12.8	128
20	The soft palate is an important site of adaptation for transmissible influenza viruses. Nature, 2015, 526, 122-125.	27.8	133
21	Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses. Journal of Virology, 2015, 89, 11935-11944.	3.4	31
22	Phylodynamics of Enterovirus A71-Associated Hand, Foot, and Mouth Disease in Viet Nam. Journal of Virology, 2015, 89, 8871-8879.	3.4	51
23	Isolation of Type A Influenza Viruses from Red-necked Grebes (<i>Podiceps grisegena</i>). Journal of Wildlife Diseases, 2015, 51, 290-293.	0.8	2
24	Whole genome analyses of G1P[8] rotavirus strains from vaccinated and non-vaccinated South African children presenting with diarrhea. Journal of Medical Virology, 2015, 87, 79-101.	5.0	36
25	The contrasting phylodynamics of human influenza B viruses. ELife, 2015, 4, e05055.	6.0	166
26	Equine Influenza A(H3N8) Virus Isolated from Bactrian Camel, Mongolia. Emerging Infectious Diseases, 2014, 20, 2144-2147.	4.3	42
27	Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern, Western and Southern Africa. Virus Genes, 2014, 49, 196-207.	1.6	29
28	Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus. PLoS Pathogens, 2014, 10, e1004420.	4.7	58
29	Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics. Journal of Clinical Microbiology, 2014, 52, 1330-1337.	3.9	86
30	Genomic analyses detect Eurasianâ€lineage H10 and additional H14 influenza A viruses recovered from waterfowl in the Central United States. Influenza and Other Respiratory Viruses, 2014, 8, 493-498.	3.4	19
31	Genomewide Analysis of Reassortment and Evolution of Human Influenza A(H3N2) Viruses Circulating between 1968 and 2011. Journal of Virology, 2014, 88, 2844-2857.	3.4	137
32	The evolutionary dynamics of influenza A and B viruses in the tropical city of Managua, Nicaragua. Virology, 2014, 462-463, 81-90.	2.4	6
33	Analysis of Recombinant H7N9 Wild-Type and Mutant Viruses in Pigs Shows that the Q226L Mutation in HA Is Important for Transmission. Journal of Virology, 2014, 88, 8153-8165.	3.4	52
34	Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations. Journal of Virology, 2014, 88, 10110-10119.	3.4	88
35	Standards for Sequencing Viral Genomes in the Era of High-Throughput Sequencing. MBio, 2014, 5, e01360-14.	4.1	89
36	North Atlantic Migratory Bird Flyways Provide Routes for Intercontinental Movement of Avian Influenza Viruses. PLoS ONE, 2014, 9, e92075.	2.5	65

#	Article	lF	Citations
37	Sequencing viral genomes from a single isolated plaque. Virology Journal, 2013, 10, 181.	3.4	16
38	Evolution of a reassortant North American gull influenza virus lineage: drift, shift and stability. Virology Journal, 2013, 10, 179.	3.4	34
39	Synthetic Generation of Influenza Vaccine Viruses for Rapid Response to Pandemics. Science Translational Medicine, 2013, 5, 185ra68.	12.4	164
40	Migration and Persistence of Human Influenza A Viruses, Vietnam, 2001–2008. Emerging Infectious Diseases, 2013, 19, 1756-1765.	4.3	16
41	Avian Influenza: Mixed Infections and Missing Viruses. Viruses, 2013, 5, 1964-1977.	3.3	18
42	Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathogens, 2013, 9, e1003570.	4.7	83
43	Sequence Analysis of <i>In Vivo</i> Defective Interfering-Like RNA of Influenza A H1N1 Pandemic Virus. Journal of Virology, 2013, 87, 8064-8074.	3.4	144
44	Asparagine Substitution at PB2 Residue 701 Enhances the Replication, Pathogenicity, and Transmission of the 2009 Pandemic H1N1 Influenza A Virus. PLoS ONE, 2013, 8, e67616.	2.5	54
45	Antiviral Responses by Swine Primary Bronchoepithelial Cells Are Limited Compared to Human Bronchoepithelial Cells Following Influenza Virus Infection. PLoS ONE, 2013, 8, e70251.	2.5	16
46	Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. Journal of General Virology, 2012, 93, 2387-2398.	2.9	25
47	Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine, 2012, 30, 3691-3702.	3.8	34
48	Genomic reassortment of influenza A virus in North American swine, 1998–2011. Journal of General Virology, 2012, 93, 2584-2589.	2.9	40
49	Influenza A Virus Molecular Virology Techniques. Methods in Molecular Biology, 2012, 865, 175-192.	0.9	82
50	Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecology Letters, 2012, 15, 24-33.	6.4	86
51	Reverse genetics plasmid for cloning unstable Influenza A virus gene segments. Journal of Virological Methods, 2011, 173, 378-383.	2.1	19
52	Deep Sequencing Reveals Mixed Infection with 2009 Pandemic Influenza A (H1N1) Virus Strains and the Emergence of Oseltamivir Resistance. Journal of Infectious Diseases, 2011, 203, 168-174.	4.0	113
53	Phylogeography of the Spring and Fall Waves of the H1N1/09 Pandemic Influenza Virus in the United States. Journal of Virology, 2011, 85, 828-834.	3.4	54
54	Extensive Geographical Mixing of 2009 Human H1N1 Influenza A Virus in a Single University Community. Journal of Virology, 2011, 85, 6923-6929.	3.4	43

#	Article	IF	CITATIONS
55	Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19359-19364.	7.1	146
56	PB2 Residue 158 Is a Pathogenic Determinant of Pandemic H1N1 and H5 Influenza A Viruses in Mice. Journal of Virology, 2011, 85, 357-365.	3.4	118
57	Unseasonal Transmission of H3N2 Influenza A Virus During the Swine-Origin H1N1 Pandemic. Journal of Virology, 2010, 84, 5715-5718.	3.4	15
58	NS-based live attenuated H1N1 pandemic vaccines protect mice and ferrets. Vaccine, 2010, 28, 8015-8025.	3.8	48
59	Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses. Journal of Virology, 2009, 83, 10309-10313.	3.4	493
60	Triaryl Pyrazoline Compound Inhibits Flavivirus RNA Replication. Antimicrobial Agents and Chemotherapy, 2006, 50, 1320-1329.	3.2	107
61	Mustela Vison ACE2 Functions as a Receptor for Sars-Coronavirus. Advances in Experimental Medicine and Biology, 2006, 581, 507-510.	1.6	12
62	Increased Viral Titers and Subtle Changes in Plaque Morphology Upon Passage of SARS-CoV in Cells from Different Species. Advances in Experimental Medicine and Biology, 2006, 581, 259-263.	1.6	3
63	Analysis of SARS-CoV Receptor Activity of ACE2 Orthologs. Advances in Experimental Medicine and Biology, 2006, 581, 277-280.	1.6	5
64	Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology, 2005, 335, 185-197.	2.4	35
65	Discovery of Novel Human and Animal Cells Infected by the Severe Acute Respiratory Syndrome Coronavirus by Replication-Specific Multiplex Reverse Transcription-PCR. Journal of Clinical Microbiology, 2004, 42, 3196-3206.	3.9	85
66	CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15748-15753.	7.1	536
67	Identification of a Receptor-Binding Domain of the Spike Glycoprotein of Human Coronavirus HCoV-229E. Journal of Virology, 2003, 77, 2530-2538.	3.4	170
68	Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation. Journal of Virology, 2001, 75, 9741-9752.	3.4	102