
Vera L M Huszar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6269706/publications.pdf

Version: 2024-02-01

VEDAL M HUSZAD

#	Article	IF	CITATIONS
1	Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 2002, 24, 417-428.	1.8	1,541
2	Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 2012, 18, 118-126.	9.5	663
3	Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 2011, 4, 593-596.	12.9	600
4	A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 2010, 55, 614-627.	2.4	393
5	Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology, 2013, 58, 552-559.	2.4	351
6	Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 2013, 58, 463-482.	2.4	259
7	What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii?. FEMS Microbiology Ecology, 2012, 79, 594-607.	2.7	195
8	Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research, 2010, 44, 3345-3354.	11.3	157
9	Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia, 2016, 770, 145-164.	2.0	127
10	Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia, 2000, 424, 67-77.	2.0	124
11	Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 2009, 628, 137-151.	2.0	116
12	Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia, 2012, 693, 13-28.	2.0	114
13	Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography, 2011, 56, 110-118.	3.1	112
14	Limnological features in TapacurÃ _i reservoir (northeast Brazil) during a severe drought. Hydrobiologia, 2003, 493, 115-130.	2.0	111
15	Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology, 2009, 57, 137-149.	1.8	107
16	Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Research, 2016, 97, 26-38.	11.3	102
17	The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes and Reservoirs: Research and Management, 2008, 13, 257-269.	0.9	97
18	Phytoplankton Functional Groups in a Tropical Estuary: Hydrological Control and Nutrient Limitation. Estuaries and Coasts, 2009, 32, 508-521.	2.2	96

#	Article	IF	CITATIONS
19	Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications, 2009, 19, 1791-1804.	3.8	91
20	Nutrient–chlorophyll relationships in tropical–subtropical lakes: do temperate models fit?. Biogeochemistry, 2006, 79, 239-250.	3.5	90
21	Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica, 2012, 42, 197-203.	1.5	74
22	Phytoplankton in an Amazonian flood-plain lake (Lago Batata, Brasil): diel variation and species strategies. Journal of Plankton Research, 2000, 22, 63-76.	1.8	70
23	Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology, 2008, 53, 952-963.	2.4	70
24	Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia, 2013, 717, 1-12.	2.0	70
25	Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnology and Oceanography, 2019, 64, 2129-2139.	3.1	70
26	Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a > 6000 km latitudinal gradient in <scp>S</scp> outh <scp>A</scp> merica. Environmental Microbiology, 2015, 17, 2336-2351.	3.8	67
27	High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir. Frontiers in Microbiology, 2016, 7, 717.	3.5	63
28	Phytoplankton dynamics in two tropical rivers with different degrees of human impact (southeast) Tj ETQq0 0 0 i	[.] gBT /Over 1.7	lock 10 Tf 50
29	Growth and temperatureâ€related phenotypic plasticity in the cyanobacterium <i><scp>C</scp>ylindrospermopsis raciborskii</i> . Phycological Research, 2013, 61, 61-67.	1.6	60
30	Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology, 2011, 56, 1540-1553.	2.4	59
31	Hydrology-Driven Regime Shifts in a Shallow Tropical Lake. Ecosystems, 2009, 12, 807-819.	3.4	58
32	Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research, 2010, 32, 999-1008.	1.8	58
33	Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology, 2017, 62, 1681-1692.	2.4	55
34	Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia, 2017, 802, 115-130.	2.0	54
35	Nutrient availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical reservoir (Southeastern Brazil). Fundamental and Applied Limnology, 2002, 153, 443-468.	0.7	54
36	Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, 2012, 72, 709-722.	0.9	52

#	Article	IF	CITATIONS
37	Steady-state assemblages of phytoplankton in four temperate lakes (NE U.S.A.). Hydrobiologia, 2003, 502, 97-109.	2.0	49
38	Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. Ecotoxicology and Environmental Safety, 2009, 72, 1183-1189.	6.0	49
39	The relationship between phytoplankton composition and physical–chemical variables: a comparison of taxonomic and morphological–functional descriptors in six temperate lakes. Freshwater Biology, 1998, 40, 679-696.	2.4	48
40	Sources of reactive nitrogen affecting ecosystems in Latin America and the Caribbean: current trends and future perspectives. Biogeochemistry, 2006, 79, 3-24.	3.5	48
41	Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica, 2014, 48, 1-10.	1.5	48
42	Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis. Water Research, 2017, 118, 121-130.	11.3	47
43	Phytoplankton abundance, biomass and diversity within and between Pantanal wetland habitats. Limnologica, 2012, 42, 235-241.	1.5	42
44	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
45	Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia, 2015, 743, 255-267.	2.0	38
46	The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia, 2016, 764, 171-186.	2.0	38
47	Cyanobacteria are controlled by omnivorous filter-feeding fish (Nile tilapia) in a tropical eutrophic reservoir. Hydrobiologia, 2016, 765, 115-129.	2.0	37
48	Title is missing!. Hydrobiologia, 1998, 369/370, 59-71.	2.0	35
49	Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil during an autumnal stratification period. Aquatic Ecology, 2009, 43, 285-293.	1.5	35
50	The efficiency of combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical shallow system. Harmful Algae, 2017, 65, 27-39.	4.8	34
51	Coagulation and precipitation of cyanobacterial blooms. Ecological Engineering, 2020, 158, 106032.	3.6	33
52	Reynolds Functional Groups: a trait-based pathway from patterns to predictions. Hydrobiologia, 2021, 848, 113-129.	2.0	31
53	Limnological effects of a large Amazonian run-of-river dam on the main river and drowned tributary valleys. Scientific Reports, 2019, 9, 16846.	3.3	30
54	Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. Journal of Plankton Research, 2016, 38, 1334-1346.	1.8	29

#	Article	IF	CITATIONS
55	Relationships between pelagic bacteria and phytoplankton abundances in contrasting tropical freshwaters. Aquatic Microbial Ecology, 2010, 60, 261-272.	1.8	28
56	Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: Is it all about climate?. Science of the Total Environment, 2017, 605-606, 527-540.	8.0	26
57	Critical assessment of chitosan as coagulant to remove cyanobacteria. Harmful Algae, 2017, 66, 1-12.	4.8	24
58	Efficacy of Coagulants and Ballast Compounds in Removal of Cyanobacteria (Microcystis) from Water of the Tropical Lagoon Jacarepaguá (Rio de Janeiro, Brazil). Estuaries and Coasts, 2017, 40, 121-133.	2.2	23
59	Brazilian scientific production on phytoplankton studies: national determinants and international comparisons. Brazilian Journal of Biology, 2015, 75, 216-223.	0.9	22
60	Coagulant plus ballast technique provides a rapid mitigation of cyanobacterial nuisance. PLoS ONE, 2017, 12, e0178976.	2.5	20
61	Rainfall leads to habitat homogenization and facilitates plankton dispersal in tropical semiarid lakes. Aquatic Ecology, 2020, 54, 225-241.	1.5	20
62	Phytoplankton composition and functional groups in a tropical humic coastal lagoon, Brazil. Acta Botanica Brasilica, 2006, 20, 701-708.	0.8	19
63	Occurrence of anatoxin-a(s) during a bloom of Anabaena crassa in a water-supply reservoir in southern Brazil. Journal of Applied Phycology, 2010, 22, 235-241.	2.8	17
64	Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming. Inland Waters, 2015, 5, 275-282.	2.2	17
65	Environmental factors affecting chlorophyll-a concentration in tropical floodplain lakes, Central Brazil. Environmental Monitoring and Assessment, 2016, 188, 611.	2.7	16
66	Downstream transport processes modulate the effects of environmental heterogeneity on riverine phytoplankton. Science of the Total Environment, 2020, 703, 135519.	8.0	16
67	Phytoplankton species predictability increases towards warmer regions. Limnology and Oceanography, 2012, 57, 1126-1135.	3.1	14
68	Plankton dynamics under different climate conditions in tropical freshwater systems (a reply to the) Tj ETQq0 0	0 rgBT /Ov 2.4	verlock 10 Tf 5
69	Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton. Hydrobiologia, 2019, 831, 55-70.	2.0	14
70	Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. Water Research, 2019, 149, 120-129.	11.3	14
71	Managing Eutrophication in a Tropical Brackish Water Lagoon: Testing Lanthanum-Modified Clay and Coagulant for Internal Load Reduction and Cyanobacteria Bloom Removal. Estuaries and Coasts, 2019, 42, 390-402.	2.2	14
72	Cyanobacterial equilibrium phases in a small tropical impoundment. Journal of Plankton Research,	1.8	13

Cyanobacterial equilibrium phases in a small tropical impoundment. Journal of Plankton Research, 2009, 31, 1331-1338. 72

#	Article	IF	CITATIONS
73	Diversity patterns of planktonic microeukaryote communities in tropical floodplain lakes based on 18S rDNA gene sequences. Journal of Plankton Research, 2019, 41, 241-256.	1.8	13
74	Taxonomy and ecology of Synedropsis roundii sp. nov. (Bacillariophyta) from a tropical brackish coastal lagoon, south-eastern Brazil. Phycologia, 2003, 42, 71-79.	1.4	12
75	Low water quality in tropical fishponds in southeastern Brazil. Anais Da Academia Brasileira De Ciencias, 2014, 86, 1181-1195.	0.8	12
76	New lake in a changing world: the construction and filling of a small hydropower reservoir in the tropics (Rio de Janeiro, Brazil). Environmental Science and Pollution Research, 2019, 26, 36007-36022.	5.3	12
77	Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research, O, , fbv084.	1.8	11
78	Functional redundancy increases towards the tropics in lake phytoplankton. Journal of Plankton Research, O, , .	1.8	11
79	Tilapia rendalli increases phytoplankton biomass of a shallow tropical lake. Acta Limnologica Brasiliensia, 2014, 26, 429-441.	0.4	10
80	The structuring role of free-floating plants on the fish community in a tropical shallow lake: an experimental approach with natural and artificial plants. Hydrobiologia, 2016, 778, 167-178.	2.0	9
81	Pigments in surface sediments of South American shallow lakes as an integrative proxy for primary producers and their drivers. Freshwater Biology, 2019, 64, 1437-1452.	2.4	9
82	Desmids of phytotelm terrestrial bromeliads from the National Park of "Restinga de Jurubatiba", Southeast Brasil. Algological Studies, 2004, 114, 99-119.	0.1	8
83	Modelling and forecasting the heterogeneous distribution of picocyanobacteria in the tropical Lajes Reservoir (Brazil) by evolutionary computation. Hydrobiologia, 2015, 749, 53-67.	2.0	8
84	The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature. Journal of Limnology, 0, , .	1.1	8
85	Steady-state assemblages of phytoplankton in four temperate lakes (NE U.S.A.). , 2003, , 97-109.		8
86	Spreading of the invasive dinoflagellate Ceratium furcoides (Levander) Langhans throughout the Paraiba do Sul ecoregion, South America, Brazil. , 2021, 40, 233-246.		8
87	Assessing the long-term efficacy of internal loading management to control eutrophication in Lake Rauwbraken. Inland Waters, 2022, 12, 61-77.	2.2	7
88	Microalgae community of the Huaytire wetland, an Andean high-altitude wetland in Peru. Acta Limnologica Brasiliensia, 2012, 24, 285-292.	0.4	6
89	<i>Limnothrix bicudoi</i> , a new species of Cyanophyceae/Cyanobacteria from Southeast of Brazil. Algological Studies (Stuttgart, Germany: 2007), 2003, 109, 93-102.	0.4	5
90	Increasing Temperature Counteracts the Negative Effect of UV Radiation on Growth and Photosynthetic Efficiency of <i>Microcystis aeruginosa</i> and <i>Raphidiopsis raciborskii</i> . Photochemistry and Photobiology, 2021, 97, 753-762.	2.5	4

Vera L M Huszar

#	Article	IF	CITATIONS
91	Phosphorus balance in a tropical shallow urban pond in Southeast Brazil: implications for eutrophication management. Inland Waters, 2022, 12, 78-93.	2.2	4
92	Effect of suspended clay on growth rates of the cyanobacterium Cylindrospermopsis raciborskii. Fundamental and Applied Limnology, 2018, 191, 13-23.	0.7	3
93	Subaerial eukaryotic algae and cyanobacteria on dripping rocks in the Atlantic Forest of southeast Brazil: composition and abundance. Revista Brasileira De Botanica, 2016, 39, 741-749.	1.3	1
94	Phytoplankton and its biotic interactions: Colin Reynolds' legacy to phytoplankton ecologists. Hydrobiologia, 2019, 831, 1-4.	2.0	1
95	Potential effects of warming on the trophic structure of shallow lakes in South America: a comparative analysis of subtropical and tropical systems. Hydrobiologia, 0, , 1.	2.0	1
96	Planktonic communities of a tropical coastal lagoon: temporal variations. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1998, 26, 1438-1438.	0.1	0