Marcel Mayor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6269053/publications.pdf

Version: 2024-02-01

254 papers 12,777 citations

59 h-index 103 g-index

280 all docs

280 docs citations

times ranked

280

11268 citing authors

#	Article	IF	CITATIONS
1	Driving Current through Single Organic Molecules. Physical Review Letters, 2002, 88, 176804.	7.8	789
2	A single-molecule diode. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8815-8820.	7.1	437
3	Experimental evidence for the functional relevance of anion–π interactions. Nature Chemistry, 2010, 2, 533-538.	13.6	434
4	Molecular junctions based on aromatic coupling. Nature Nanotechnology, 2008, 3, 569-574.	31.5	336
5	Quantum interference of large organic molecules. Nature Communications, 2011, 2, 263.	12.8	285
6	Influence of Conformation on Conductance of Biphenyl-Dithiol Single-Molecule Contacts. Nano Letters, 2010, 10, 156-163.	9.1	284
7	Lightâ€Powered Electrical Switch Based on Cargoâ€Lifting Azobenzene Monolayers. Angewandte Chemie - International Edition, 2008, 47, 3407-3409.	13.8	276
8	Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9937-9942.	7.1	273
9	Electric Current through a Molecular Rod—Relevance of the Position of the Anchor Groups. Angewandte Chemie - International Edition, 2003, 42, 5834-5838.	13.8	272
10	Azobenzenes as Light-Controlled Molecular Electronic Switches in Nanoscale Metalâ^'Moleculeâ^'Metal Junctions. Journal of the American Chemical Society, 2008, 130, 9192-9193.	13.7	257
11	Strain-induced helical chirality in polyaromatic systems. Chemical Society Reviews, 2016, 45, 1542-1556.	38.1	238
12	Single-Molecule Junctions Based on Nitrile-Terminated Biphenyls: A Promising New Anchoring Group. Journal of the American Chemical Society, 2011, 133, 184-187.	13.7	212
13	Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Physical Chemistry Chemical Physics, 2013, 15, 14696.	2.8	197
14	Chirality in curved polyaromatic systems. Chemical Society Reviews, 2017, 46, 1643-1660.	38.1	194
15	Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions. Physical Review Letters, 2012, 109, 056801.	7.8	185
16	Electrical Conductance of Conjugated Oligomers at the Single Molecule Level. Journal of the American Chemical Society, 2008, 130, 1080-1084.	13.7	180
17	A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Physics, 2007, 3, 711-715.	16.7	175
18	Quantum superposition of molecules beyond 25 kDa. Nature Physics, 2019, 15, 1242-1245.	16.7	170

#	Article	IF	Citations
19	Electronic transport through single conjugated molecules. Chemical Physics, 2002, 281, 113-125.	1.9	167
20	Chemically Controlled Conductivity: Torsionâ€Angle Dependence in a Singleâ€Molecule Biphenyldithiol Junction. Angewandte Chemie - International Edition, 2009, 48, 8886-8890.	13.8	142
21	Electroluminescence from a single nanotube–molecule–nanotube junction. Nature Nanotechnology, 2010, 5, 863-867.	31.5	140
22	Optical Modulation of the Charge Injection in an Organic Fieldâ€Effect Transistor Based on Photochromic Selfâ€Assembledâ€Monolayerâ€Functionalized Electrodes. Advanced Materials, 2011, 23, 1447-1452.	21.0	140
23	Singleâ€Molecule Spin Switch Based on Voltageâ€Triggered Distortion of the Coordination Sphere. Angewandte Chemie - International Edition, 2015, 54, 13425-13430.	13.8	138
24	Selective Dispersion of Single-Walled Carbon Nanotubes with Specific Chiral Indices by Poly(<i>N</i> -decyl-2,7-carbazole). Journal of the American Chemical Society, 2011, 133, 652-655.	13.7	135
25	Atrans-Platinum(II) Complex as a Single-Molecule Insulator. Angewandte Chemie - International Edition, 2002, 41, 1183-1186.	13.8	134
26	Molecular daisy chains. Chemical Society Reviews, 2013, 42, 44-62.	38.1	130
27	Two Dimensional Chiral Networks Emerging from the Arylâ^'F···H Hydrogen-Bond-Driven Self-Assembly of Partially Fluorinated Rigid Molecular Structures. Journal of the American Chemical Society, 2008, 130, 10840-10841.	13.7	126
28	Low-temperature conductance measurements on single molecules. Applied Physics Letters, 2003, 82, 4137-4139.	3.3	125
29	Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nature Communications, 2013, 4, 2110.	12.8	125
30	Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discussions, 2006, 131, 121-143.	3.2	124
31	Real-time single-molecule imaging of quantum interference. Nature Nanotechnology, 2012, 7, 297-300.	31.5	115
32	Cyclic Conductance Switching in Networks of Redox-Active Molecular Junctions. Nano Letters, 2010, 10, 759-764.	9.1	108
33	Functional molecules in electronic circuits. Organic and Biomolecular Chemistry, 2007, 5, 2343-53.	2.8	105
34	A Giant Conjugated Molecular Ring. Angewandte Chemie - International Edition, 2003, 42, 3176-3179.	13.8	104
35	Stretching-Induced Conductance Increase in a Spin-Crossover Molecule. Nano Letters, 2016, 16, 4733-4737.	9.1	96
36	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	21.0	93

#	Article	IF	CITATIONS
37	Self-Assembled Monolayers from Biphenyldithiol Derivatives:Â Optimization of the Deprotection Procedure and Effect of the Molecular Conformation. Journal of Physical Chemistry B, 2006, 110, 4307-4317.	2.6	83
38	Redox-Switching in a Viologen-type Adlayer: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study on $\text{Au}(111)$ - $(1\tilde{\text{A}}-1)$ Single Crystal Electrodes. ACS Nano, 2011, 5, 5662-5672.	14.6	83
39	A multifunctional poly-N-vinylcarbazole interlayer in perovskite solar cells for high stability and efficiency: a test with new triazatruxene-based hole transporting materials. Journal of Materials Chemistry A, 2017, 5, 1913-1918.	10.3	83
40	Conduction mechanisms in biphenyl dithiol single-molecule junctions. Physical Review B, 2012, 85, .	3.2	82
41	Polymer Library Comprising Fluorene and Carbazole Homo- and Copolymers for Selective Single-Walled Carbon Nanotubes Extraction. Macromolecules, 2012, 45, 713-722.	4.8	80
42	In Situ Gap-Mode Raman Spectroscopy on Single-Crystal Au(100) Electrodes: Tuning the Torsion Angle of 4,4 \hat{a} \in ² -Biphenyldithiols by an Electrochemical Gate Field. Journal of the American Chemical Society, 2011, 133, 7332-7335.	13.7	79
43	Single Component Selfâ€Assembled Monolayers of Aromatic Azoâ€Biphenyl: Influence of the Packing Tightness on the SAM Structure and Lightâ€induced Molecular Movements. Advanced Functional Materials, 2008, 18, 2972-2983.	14.9	78
44	Conductance of redox-active single molecular junctions: an electrochemical approach. Nanotechnology, 2007, 18, 044018.	2.6	77
45	An electrically actuated molecular toggle switch. Nature Communications, 2017, 8, 14672.	12.8	77
46	Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices. Nature, 2018, 559, 232-235.	27.8	75
47	Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly(3-hexylthiophene). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12375-12380.	7.1	70
48	Molecular weaving via surface-templated epitaxy of crystalline coordination networks Nature Communications, 2017, 8, 14442.	12.8	70
49	Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. Nano Letters, 2018, 18, 5981-5988.	9.1	69
50	New Cruciform Structures:  Toward Coordination Induced Single Molecule Switches. Journal of Organic Chemistry, 2007, 72, 8337-8344.	3.2	66
51	Heterogenization of Photochemical Molecular Devices: Embedding a Metal–Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer. Journal of the American Chemical Society, 2019, 141, 13057-13065.	13.7	64
52	Phenylâ€"Acetylene Bond Assembly: A Powerful Tool for the Construction of Nanoscale Architectures. European Journal of Organic Chemistry, 2011, 2011, 4965-4983.	2.4	63
53	Copolymer-Controlled Diameter-Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. Chemistry of Materials, 2011, 23, 2237-2249.	6.7	62
54	Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes. Journal of Materials Chemistry C, 2015, 3, 3007-3015.	5 . 5	62

#	Article	IF	CITATIONS
55	Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 14302.	2.8	61
56	Charge Transport Through a Cardanâ€Joint Molecule. Small, 2008, 4, 2229-2235.	10.0	60
57	Light-responsive reversible solvation and precipitation of gold nanoparticles. Chemical Communications, 2010, 46, 1147-1149.	4.1	60
58	Electronic decoupling of a cyclophane from a metal surface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 961-964.	7.1	59
59	Rigid multipodal platforms for metal surfaces. Beilstein Journal of Nanotechnology, 2016, 7, 374-405.	2.8	55
60	Series of Photoswitchable Azobenzene-Containing Metal–Organic Frameworks with Variable Adsorption Switching Effect. Journal of Physical Chemistry C, 2018, 122, 19044-19050.	3.1	54
61	Shape-persistent macrocycle with a self-complementary recognition pattern based on diacetylene-linked alternating hexylbenzene and perfluorobenzene rings. Chemical Communications, 2006, , 4134.	4.1	49
62	Influence of the Anchor Group on Charge Transport through Singleâ€Molecule Junctions. ChemPhysChem, 2011, 12, 1677-1682.	2.1	46
63	Matterâ€Wave Metrology as a Complementary Tool for Mass Spectrometry. Angewandte Chemie - International Edition, 2008, 47, 6195-6198.	13.8	45
64	Synthesis, Structure, and Optical Properties of Terminally Sulfur-Functionalized Core-Substituted Naphthalene-Bisimide Dyes. Helvetica Chimica Acta, 2006, 89, 1986-2005.	1.6	44
65	Reducible Nanosize Macrocycles. Journal of the American Chemical Society, 1999, 121, 11231-11232.	13.7	43
66	Charge Transport through Molecular Rods with Reduced Ï€â€Conjugation. ChemPhysChem, 2008, 9, 2252-2258.	2.1	43
67	Gold Nanoparticles Stabilized by Acetyleneâ€Functionalized Multidentate Thioether Ligands: Building Blocks for Nanoparticle Superstructures. Advanced Functional Materials, 2009, 19, 3497-3506.	14.9	43
68	Shapeâ€Switchable Azoâ€Macrocycles. European Journal of Organic Chemistry, 2009, 2009, 2562-2575.	2.4	43
69	Debundling, selection and release of SWNTs using fluorene-based photocleavable polymers. Chemical Communications, 2011, 47, 7428.	4.1	43
70	<i>Ab initio</i> study of the thermopower of biphenyl-based single-molecule junctions. Physical Review B, 2012, 86, .	3.2	43
71	Synthesis of Molecular Tripods Based on a Rigid 9,9′-Spirobifluorene Scaffold. Journal of Organic Chemistry, 2014, 79, 7342-7357.	3.2	43
72	A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. Journal of the American Chemical Society, 2019, 141, 9273-9283.	13.7	43

#	Article	IF	CITATIONS
73	Bromine catalyzed conversion of S-tert-butyl groups into versatile and, for self-assembly processes accessible, acetyl-protected thiols. Organic and Biomolecular Chemistry, 2004, 2, 2722-2724.	2.8	41
74	Planar chiral asymmetric naphthalenediimide cyclophanes: synthesis, characterization and tunable FRET properties. Organic and Biomolecular Chemistry, 2009, 7, 3222.	2.8	41
75	Gold Nanoparticles Stabilized by Thioether Dendrimers. Chemistry - A European Journal, 2011, 17, 13473-13481.	3.3	41
76	Monofunctionalized Gold Nanoparticles Stabilized by a Single Dendrimer Form Dumbbell Structures upon Homocoupling. Journal of the American Chemical Society, 2012, 134, 14674-14677.	13.7	41
77	Mechanical Stabilization of Helical Chirality in a Macrocyclic Oligothiophene. Journal of the American Chemical Society, 2019, 141, 2104-2110.	13.7	41
78	Multidentate thioether ligands coating gold nanoparticles. Chemical Communications, 2008, , 3438.	4.1	40
79	Resonant Photoconductance of Molecular Junctions Formed in Gold Nanoparticle Arrays. Journal of the American Chemical Society, 2011, 133, 12185-12191.	13.7	40
80	Variation of the Backbone Conjugation in NLO Model Compounds: Torsionâ€Angleâ€Restricted, Biphenylâ€Based Pushâ€Pullâ€Systems. European Journal of Organic Chemistry, 2010, 2010, 1096-1110.	2.4	39
81	Importance of the Anchor Group Position (<i>Para</i> versus <i>Meta</i>) in Tetraphenylmethane Tripods: Synthesis and Selfâ€Assembly Features. Chemistry - A European Journal, 2016, 22, 13218-13235.	3.3	39
82	Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction. Journal of the American Chemical Society, 2018, 140, 4835-4840.	13.7	39
83	Catecholâ∈Based Macrocyclic Rods: En Route to Redoxâ∈Active Molecular Switches. European Journal of Organic Chemistry, 2009, 2009, 6140-6150.	2.4	38
84	Light emission from a double-decker molecule on a metal surface. Physical Review B, 2011, 84, .	3.2	38
85	Spatial and Lateral Control of Functionality by Rigid Molecular Platforms. Chemistry - A European Journal, 2017, 23, 13538-13548.	3.3	38
86	Electron Transfer Through Molecular Bridges Between Reducible Pentakis(thiophenyl)benzene Subunits. Chemistry - A European Journal, 2001, 7, 1266-1272.	3.3	37
87	Synthesis of Rotationally Restricted and Modular Biphenyl Building Blocks. European Journal of Organic Chemistry, 2010, 2010, 120-133.	2.4	37
88	Electronic Decoupling in C ₃ -Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism. Journal of the American Chemical Society, 2018, 140, 16062-16070.	13.7	37
89	Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. New Journal of Physics, 2008, 10, 065019.	2.9	36
90	Tuning Charge Transport Properties of Asymmetric Molecular Junctions. Journal of Physical Chemistry C, 2017, 121, 12885-12894.	3.1	36

#	Article	IF	CITATIONS
91	Selective Dispersion of Largeâ€Diameter Semiconducting Singleâ€Walled Carbon Nanotubes with Pyridineâ€Containing Copolymers. Small, 2014, 10, 360-367.	10.0	35
92	Synthesis of Macrocyclic Molecular Rods as Potential Electronic Devices. European Journal of Organic Chemistry, 2006, 2006, 3809-3825.	2.4	34
93	Potential-Induced Redox Switching in Viologen Self-Assembled Monolayers: An ATRâ^SEIRAS Approach. Journal of Physical Chemistry C, 2007, 111, 13855-13863.	3.1	34
94	Shape-persistent macrocycles comprising perfluorinated benzene subunits: synthesis, aggregation behaviour and unexpected $\hat{l}\frac{1}{4}$ -rod formation. Organic and Biomolecular Chemistry, 2009, 7, 1081.	2.8	33
95	Influence of conformational molecular dynamics on matter wave interferometry. Physical Review A, 2010, 81, .	2.5	33
96	Reducible Nanoscale Molecular Rods Based on Diacetylene-Linked Poly(phenylthio)-Substituted Benzenes. Angewandte Chemie International Edition in English, 1997, 36, 2370-2372.	4.4	32
97	Ein konjugierter molekularer Riesenring. Angewandte Chemie, 2003, 115, 3284-3287.	2.0	32
98	New 4,4′-Bis(9-carbazolyl)–Biphenyl Derivatives with Locked Carbazole–Biphenyl Junctions: High-Triplet State Energy Materials. Chemistry of Materials, 2015, 27, 1772-1779.	6.7	32
99	Fragmentation and Distortion of Terpyridine-Based Spin-Crossover Complexes on Au(111). Journal of Physical Chemistry C, 2019, 123, 4178-4185.	3.1	32
100	Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale, 2014, 6, 8969-8977.	5.6	31
101	Protectingâ€Groupâ€Controlled Surface Chemistry—Organization and Heatâ€Induced Coupling of 4,4′â€Di(<i>tert</i> àâ€butoxycarbonylamino)biphenyl on Metal Surfaces. Angewandte Chemie - International Edition, 2009, 48, 3179-3183.	13.8	30
102	Multiscale Charge Injection and Transport Properties in Selfâ€Assembled Monolayers of Biphenyl Thiols with Varying Torsion Angles. Chemistry - A European Journal, 2012, 18, 10335-10347.	3.3	30
103	Unravelling the conductance path through single-porphyrin junctions. Chemical Science, 2019, 10, 8299-8305.	7.4	30
104	In-situ formation of one-dimensional coordination polymers in molecular junctions. Nature Communications, 2019, 10, 262.	12.8	30
105	Selective dispersion of single-walled carbon nanotubes via easily accessible conjugated click polymers. Polymer Chemistry, 2012, 3, 1966.	3.9	29
106	Hydrophobic Hole-Transporting Materials Incorporating Multiple Thiophene Cores with Long Alkyl Chains for Efficient Perovskite Solar Cells. Electrochimica Acta, 2016, 209, 529-540.	5.2	29
107	Fast temporal fluctuations in single-molecule junctions. Faraday Discussions, 2006, 131, 281-289.	3.2	27
108	Tuning the charge injection of P3HT-based organic thin-film transistors through electrode functionalization with oligophenylene SAMs. Journal of Materials Chemistry, 2010, 20, 10798.	6.7	27

#	Article	IF	CITATIONS
109	Electric moments in molecule interferometry. New Journal of Physics, 2011, 13, 043033.	2.9	27
110	Influence of molecular weight on selective oligomer-assisted dispersion of single-walled carbon nanotubes and subsequent polymer exchange. Chemical Communications, 2012, 48, 2516.	4.1	27
111	Atropisomerization of di-para-substituted propyl-bridged biphenyl cyclophanes. Organic and Biomolecular Chemistry, 2013, 11, 110-118.	2.8	27
112	Quantum interference distinguishes between constitutional isomers. Chemical Communications, 2010, 46, 4145.	4.1	26
113	Scanning the Potential Energy Surface for Synthesis of Dendrimer-Wrapped Gold Clusters: Design Rules for True Single-Molecule Nanostructures. ACS Nano, 2012, 6, 3007-3017.	14.6	26
114	Negative Differential Photoconductance in Gold Nanoparticle Arrays in the Coulomb Blockade Regime. ACS Nano, 2012, 6, 4181-4189.	14.6	26
115	4,4″â€Disubstituted Terpyridines and Their Homoleptic Fe ^{II} Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 3334-3347.	2.0	26
116	Chirality sensing of terpenes, steroids, amino acids, peptides and drugs with acyclic cucurbit[<i>n</i>]urils and molecular tweezers. Chemical Communications, 2020, 56, 4652-4655.	4.1	26
117	Statistical Analysis of Single-Molecule Junctions. Angewandte Chemie - International Edition, 2004, 43, 2882-2884.	13.8	25
118	A rigid sublimable naphthalenediimide cyclophane as model compound for UHV STM experiments. Chemical Communications, 2008, , 2370.	4.1	25
119	Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. ACS Nano, 2021, 15, 4699-4709.	14.6	25
120	Conductance properties of single-molecule junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 231-232.	2.7	24
121	Racemisation dynamics of torsion angle restricted biphenyl push-pull cyclophanes. Organic and Biomolecular Chemistry, 2011, 9, 86-91.	2.8	24
122	Conformationally Controlled Electron Delocalization in nâ€Type Rods: Synthesis, Structure, and Optical, Electrochemical, and Spectroelectrochemical Properties of Dicyanocyclophanes. Chemistry - A European Journal, 2011, 17, 7236-7250.	3.3	24
123	Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts. Applied Physics Letters, 2014, 104, 103102.	3.3	24
124	Inducing Axial Chirality in a "Geläder―Oligomer by Length Mismatch of the Oligomer Strands. Angewandte Chemie - International Edition, 2014, 53, 14587-14591.	13.8	24
125	Identification of the current path for a conductive molecular wire on a tripodal platform. Nanoscale, 2016, 8, 10582-10590.	5. 6	24
126	Determining Inversion Barriers in Atrop- isomers – A Tutorial for Organic Chemists. Chimia, 2016, 70, 192.	0.6	24

#	Article	IF	Citations
127	Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions. Journal of the American Chemical Society, 2021, 143, 13944-13951.	13.7	24
128	Direct Control of the Spatial Arrangement of Gold Nanoparticles in Organic–Inorganic Hybrid Superstructures. Small, 2011, 7, 920-929.	10.0	22
129	Synthesis and Optical Properties of Molecular Rods Comprising a Central Coreâ€Substituted Naphthalenediimide Chromophore for Carbon Nanotube Junctions. European Journal of Organic Chemistry, 2011, 2011, 478-496.	2.4	22
130	Porphyrins as building blocks for single-molecule devices. Nanoscale, 2021, 13, 15500-15525.	5.6	22
131	Potassium Cryptate of a Macrobicyclic Ligand Featuring a Reducible hexakis(phenylthio)benzene electron-acceptor site. Helvetica Chimica Acta, 1997, 80, 2277-2285.	1.6	21
132	Redoxâ€Active Catecholâ€Functionalized Molecular Rods: Suitable Protection Groups and Singleâ€Molecule Transport Investigations. European Journal of Organic Chemistry, 2008, 2008, 136-149.	2.4	21
133	Oligoaryl Cruciform Structures as Model Compounds for Coordinationâ€Induced Singleâ€Molecule Switches. European Journal of Organic Chemistry, 2010, 2010, 833-845.	2.4	21
134	Laser-Induced Acoustic Desorption of Natural and Functionalized Biochromophores. Analytical Chemistry, 2015, 87, 5614-5619.	6.5	21
135	Intramolecular exchange interaction in twofold spin-labelled platinum complexes. Chemical Communications, 2004, , 2050-2051.	4.1	20
136	Suzuki Reactions with Stable Organic Radicals - Synthesis of Biphenyls Substituted with Nitronyl-Nitroxide Radicals. European Journal of Organic Chemistry, 2005, 2005, 3697-3703.	2.4	20
137	Controllability of the Coulomb charging energy in close-packed nanoparticle arrays. Nanoscale, 2013, 5, 10258.	5.6	20
138	Electron–Phonon Coupling in Current-Driven Single-Molecule Junctions. Journal of the American Chemical Society, 2020, 142, 3384-3391.	13.7	20
139	Modular Functionalization of Electrodes by Crossâ€Coupling Reactions at Their Surfaces. Advanced Functional Materials, 2011, 21, 3706-3714.	14.9	19
140	Molecular Graph Paper. Angewandte Chemie - International Edition, 2017, 56, 8290-8294.	13.8	19
141	Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group. Beilstein Journal of Nanotechnology, 2011, 2, 834-844.	2.8	18
142	First-principle-based MD description of azobenzene molecular rods. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	18
143	Photomodulation of Two-Dimensional Self-Assembly of Azobenzene–Hexa-∢i>peri⟨ i>-hexabenzocoronene–Azobenzene Triads. Chemistry of Materials, 2019, 31, 6979-6985.	6.7	18
144	Rigid nitronyl-nitroxide-labelled anchoring molecules: syntheses, structural and magnetic investigations. Tetrahedron Letters, 2004, 45, 9623-9626.	1.4	17

#	Article	IF	CITATIONS
145	Dumbbells, Trikes and Quads: Organic–Inorganic Hybrid Nanoarchitectures Based on "Clicked―Gold Nanoparticles. Small, 2014, 10, 349-359.	10.0	17
146	Au nanoparticle scaffolds modulating intermolecular interactions among the conjugated azobenzenes chemisorbed on curved surfaces: tuning the kinetics of ⟨i⟩cis⟨ i⟩–⟨i⟩trans⟨ i⟩ isomerisation. Nanoscale, 2015, 7, 13836-13839.	5.6	17
147	Investigation of the geometrical arrangement and single molecule charge transport in self-assembled monolayers of molecular towers based on tetraphenylmethane tripod. Electrochimica Acta, 2017, 258, 1191-1200.	5.2	17
148	Chiral macrocyclic terpyridine complexes. Chemical Science, 2018, 9, 3837-3843.	7.4	17
149	Beyond Simple Substitution Patterns – Symmetrically Tetrasubstituted [2.2]Paracyclophanes as 3D Functional Materials. European Journal of Organic Chemistry, 2019, 2019, 3073-3085.	2.4	17
150	Variation of the Ultrafast Fluorescence Quenching in 2,6-Sulfanyl-Core-Substituted Naphthalenediimides by Electron Transfer. Journal of Physical Chemistry A, 2010, 114, 12555-12560.	2.5	16
151	Deltoid versus Rhomboid: Controlling the Shape of Bis-ferrocene Macrocycles by the Bulkiness of the Substituents. Organometallics, 2017, 36, 858-866.	2.3	16
152	Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates. European Journal of Organic Chemistry, 2019, 2019, 6956-6960.	2.4	16
153	Iron in a Cage: Fixation of a Fe(II)tpy ₂ Complex by Fourfold Interlinking. Angewandte Chemie - International Edition, 2020, 59, 15947-15952.	13.8	16
154	Monitoring Solidâ€Phase Reactions in Selfâ€Assembled Monolayers by Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 17981-17988.	13.8	15
155	Molecular Electronics – Integration of Single Molecules in Electronic Circuits. Chimia, 2002, 56, 494-499.	0.6	14
156	Promoted Exchange Reaction between Alkanethiolate Self-Assembled Monolayers and an Azide-Bearing Substituent. Journal of Physical Chemistry C, 2016, 120, 25967-25976.	3.1	14
157	Immobilization of Zinc Porphyrin Complexes on Pyridine-Functionalized Glass Surfaces. Langmuir, 2010, 26, 10822-10826.	3 . 5	13
158	Tuning Helical Chirality in Polycyclic Ladder Systems. Chemistry - A European Journal, 2015, 21, 18156-18167.	3.3	13
159	A self assembled molecular zipper based on a perfluorophenyl-phenyl diacetylene motif. Chemical Communications, 2006, , 1862.	4.1	12
160	Watching the Gap Close. Angewandte Chemie - International Edition, 2009, 48, 5583-5585.	13.8	12
161	High Aspect Ratio Constructive Nanolithography with a Photo-Dimerizable Molecule. Langmuir, 2010, 26, 3623-3628.	3.5	12
162	Optically switchable molecular device using microsphere based junctions. Applied Physics Letters, 2011, 99, 233104.	3.3	12

#	Article	IF	CITATIONS
163	Add a third hook: S-acetyl protected oligophenylene pyridine dithiols as advanced precursors for self-assembled monolayers. Physical Chemistry Chemical Physics, 2013, 15, 2836.	2.8	12
164	Molecular dynamic staircases: all-carbon axial chiral "Geläder―structures. Chemical Science, 2018, 9, 5758-5766.	7.4	12
165	Probabilistic mapping of single molecule junction configurations as a tool to achieve the desired geometry of asymmetric tripodal molecules. Chemical Communications, 2019, 55, 3351-3354.	4.1	12
166	The Synthesis of Molecular Rods with a Transversal Push-Pull System. European Journal of Organic Chemistry, 2007, 2007, 2630-2642.	2.4	11
167	Two-Dimensional Self-Assembly of Linear Molecular Rods at the Liquid/Solid Interfaceâ€. Langmuir, 2011, 27, 1359-1363.	3.5	11
168	Highly Fluorous Porphyrins as Model Compounds for Molecule Interferometry. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	2.4	11
169	Isolated facial and meridional tris(bipyridine)Ru(<scp>ii</scp>) for STM studies on Au(111). Chemical Communications, 2013, 49, 1076-1078.	4.1	11
170	Tripodal M ^{III} Complexes on Au(111) Surfaces: Towards Molecular "Lunar Modules― European Journal of Inorganic Chemistry, 2013, 2013, 70-79.	2.0	11
171	Electron transport through catechol-functionalized molecular rods. Electrochimica Acta, 2013, 110, 709-717.	5.2	11
172	A Tripodal Molecule on a Gold Surface: Orientation-Dependent Coupling and Electronic Properties of the Molecular Legs. ACS Nano, 2013, 7, 6170-6180.	14.6	11
173	Tailoring the volatility and stability of oligopeptides. Journal of Mass Spectrometry, 2017, 52, 550-556.	1.6	11
174	Isotope-selective high-order interferometry with large organic molecules in free fall. New Journal of Physics, 2018, 20, 033016.	2.9	11
175	Enhanced Separation Concept (ESC): Removing the Functional Subunit from the Electrode by Molecular Design. European Journal of Organic Chemistry, 2019, 2019, 5334-5343.	2.4	11
176	Six state molecular revolver mounted on a rigid platform. Nanoscale, 2019, 11, 9015-9022.	5.6	11
177	Magnetic-Field Universality of the Kondo Effect Revealed by Thermocurrent Spectroscopy. Physical Review Letters, 2022, 128, 147701.	7.8	11
178	Molecular Daisy Chains: Synthesis and Aggregation Studies of an Amphiphilic Molecular Rod. Chemistry - A European Journal, 2013, 19, 2089-2101.	3.3	10
179	Single-Photon Ionization of Organic Molecules Beyond 10ÂkDa. Journal of the American Society for Mass Spectrometry, 2013, 24, 602-608.	2.8	10
180	Controlled assembly and single electron charging of monolayer protected Au ₁₄₄ clusters: an electrochemistry and scanning tunneling spectroscopy study. Nanoscale, 2014, 6, 15117-15126.	5 . 6	10

#	Article	IF	CITATIONS
181	A Molecular Turnstile as an ⟨i>E⟨/i>â€Fieldâ€Triggered Singleâ€Molecule Switch: Concept and Synthesis. European Journal of Organic Chemistry, 2017, 2017, 3165-3178.	2.4	10
182	Pushing the mass limit for intact launch and photoionization of large neutral biopolymers. Communications Chemistry, 2018, 1 , .	4.5	10
183	Degradable Fluorene- and Carbazole-Based Copolymers for Selective Extraction of Semiconducting Single-Walled Carbon Nanotubes. Macromolecules, 2021, 54, 4363-4374.	4.8	10
184	Mechanical conductance tunability of a porphyrin–cyclophane single-molecule junction. Nanoscale, 2022, 14, 984-992.	5.6	10
185	STM Investigation of Large π-Conjugated Oligomers and Tetrahydrofuran Codeposited on Cu(111) by Pulse Injection. Journal of Physical Chemistry C, 2009, 113, 14335-14340.	3.1	9
186	Loops versus Stems: Benzylic Sulfide Oligomers Forming Carpet Type Monolayers. Journal of Physical Chemistry C, 2010, 114, 4118-4125.	3.1	9
187	Increased efficiency of light-emitting diodes incorporating anodes functionalized with fluorinated azobenzene monolayers and a green-emitting polyfluorene derivative. Applied Physics Letters, 2012, 101,	3.3	9
188	Synthesis and Solidâ€State Investigations of Oligoâ€Phenylene–Ethynylene Structures with Halide Endâ€Groups. European Journal of Organic Chemistry, 2012, 2012, 2738-2747.	2.4	9
189	Synthesis of Highly Fluoroalkylâ€Functionalized Oligoporphyrin Systems. European Journal of Organic Chemistry, 2014, 2014, 6884-6895.	2.4	9
190	Activation enthalpies and entropies of the atropisomerization of substituted butyl-bridged biphenyls. Physical Chemistry Chemical Physics, 2015, 17, 11165-11173.	2.8	9
191	Through the Maze: Crossâ€Coupling Pathways to a Helical Hexaphenyl "Geläder―Molecule. European Journal of Organic Chemistry, 2015, 2015, 786-801.	2.4	9
192	Sequential nested assembly at the liquid/solid interface. Faraday Discussions, 2017, 204, 173-190.	3.2	9
193	Synthesis of trinorbornane. Chemical Communications, 2017, 53, 11399-11402.	4.1	9
194	Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum. Physical Chemistry Chemical Physics, 2018, 20, 11412-11417.	2.8	9
195	Controlling the Entropy of a Single-Molecule Junction. Nano Letters, 2021, 21, 9715-9719.	9.1	9
196	Synthesis of Vitamin B12 Derivatives with a Peripheral Metal Binding Site. Helvetica Chimica Acta, 1997, 80, 1183-1189.	1.6	8
197	Electron Transfer Through Bridging Molecular Structures. Annals of the New York Academy of Sciences, 2002, 960, 16-28.	3.8	8
198	Stability of high-mass molecular libraries: the role of the oligoporphyrin core. Journal of Mass Spectrometry, 2015, 50, 235-239.	1.6	8

#	Article	lF	Citations
199	Assembly of [2]Rotaxanes in Water. European Journal of Organic Chemistry, 2017, 2017, 4091-4103.	2.4	8
200	Aqueous Assembly of Zwitterionic Daisy Chains. Chemistry - A European Journal, 2019, 25, 285-295.	3.3	8
201	Improved Photostability of a Cu I Complex by Macrocyclization of the Phenanthroline Ligands. Chemistry - A European Journal, 2020, 26, 3119-3128.	3.3	8
202	Nanoparticles to Hybrid Organic-Inorganic Superstructures. Chimia, 2011, 65, 219-222.	0.6	7
203	STM study of oligo(phenylene-ethynylene)s. New Journal of Physics, 2015, 17, 053043.	2.9	7
204	Molekulares KÃ\$\textchenpapier. Angewandte Chemie, 2017, 129, 8405-8410.	2.0	7
205	Matter–wave interference and deflection of tripeptides decorated with fluorinated alkyl chains. Journal of Mass Spectrometry, 2020, 55, e4514.	1.6	7
206	Mechanical compression in cofacial porphyrin cyclophane pincers. Chemical Science, 2022, 13, 8017-8024.	7.4	7
207	Novel Cruciform Structures as Model Compounds for Coordination Induced Single Molecule Switches. Chimia, 2010, 64, 140.	0.6	6
208	Bestowing structure upon the pores of a supramolecular network. Chemical Communications, 2014, 50, 14175-14178.	4.1	6
209	Selective photodissociation of tailored molecular tags as a tool for quantum optics. Beilstein Journal of Nanotechnology, 2017, 8, 325-333.	2.8	6
210	Gold Nanoparticles Stabilized by Single Tripodal Ligands. Particle and Particle Systems Characterization, 2018, 35, 1800015.	2.3	6
211	Tuning the contact conductance of anchoring groups in single molecule junctions by molecular design. Nanoscale, 2019, 11, 12959-12964.	5.6	6
212	A Chiral Macrocyclic Oligothiophene with Broken Conjugation – Rapid Racemization through Internal Rotation. Helvetica Chimica Acta, 2019, 102, e1800205.	1.6	6
213	Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer. Journal of Organic Chemistry, 2020, 85, 118-128.	3.2	6
214	Automated, 3â€D and Subâ€Micron Accurate Ablationâ€Volume Determination by Inverse Molding and Xâ€Ray Computed Tomography. Advanced Science, 2022, 9, e2200136.	11.2	6
215	Molekulare Elektronik. Nachrichten Aus Der Chemie, 2002, 50, 1212-1217.	0.0	5
216	Nanopatterning by Molecular Self-assembly on Surfaces. Chimia, 2013, 67, 222-226.	0.6	5

#	Article	IF	CITATIONS
217	Linear Tetraphenylmethaneâ€Based Thioether Oligomers Stabilising an Entire Gold Nanoparticle by Enwrapping. Chemistry - A European Journal, 2016, 22, 2261-2265.	3.3	5
218	Adatom Coadsorption with Three-Dimensional Cyclophanes on Ag(111). Journal of Physical Chemistry C, 2017, 121, 25303-25308.	3.1	5
219	A Phenylâ€Ethynylâ€Macrocycle: A Model Compound for "Geläder―Oligomers Comprising Reactive Conjugated Banisters. European Journal of Organic Chemistry, 2018, 2018, 3391-3402.	2.4	5
220	Electrochemical Multiplexing: Control over Surface Functionalization by Combining a Redoxâ€Sensitive Alkyne Protection Group with "Clickâ€â€Chemistry. Advanced Materials Interfaces, 2019, 6, 1801917.	3.7	5
221	Molecular Ansa-Basket: Synthesis of Inherently Chiral All-Carbon [12](1,6)Pyrenophane. Journal of Organic Chemistry, 2019, 84, 5271-5276.	3.2	5
222	Neutralization of insulin by photocleavage under high vacuum. Chemical Communications, 2019, 55, 12507-12510.	4.1	5
223	Synthesis and Transport Studies of a Cofacial Porphyrin Cyclophane. Journal of Organic Chemistry, 2020, 85, 15072-15081.	3.2	5
224	Supramolecular Functional Materials: A National Research Program Paves the Way to the Scientific Future. Advanced Functional Materials, 2006, 16, 143-145.	14.9	4
225	Rotationally Restricted $1,1\hat{a}\in 2\hat{a}\in B$ is \hat{A} (phenylethynyl) ferrocene Subunits in Macrocycles. European Journal of Organic Chemistry, 2016, 2016, 2187-2199.	2.4	4
226	Iron in a Cage: Fixation of a Fe(II)tpy 2 Complex by Fourfold Interlinking. Angewandte Chemie, 2020, 132, 16081-16086.	2.0	4
227	Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip. Physical Chemistry Chemical Physics, 2021, 23, 4874-4881.	2.8	4
228	Bicyclic Phenyl–Ethynyl Architectures: Synthesis of a 1,4â€Bis(phenylbutaâ€1,3â€diynâ€1â€yl) Benzene Banisto Chemistry - A European Journal, 2021, 27, 6295-6307.	er 3.3	4
229	Synthesis and Surface Behaviour of NDI Chromophores Mounted on a Tripodal Scaffold: Towards Selfâ€Decoupled Chromophores for Singleâ€Molecule Electroluminescence. Chemistry - A European Journal, 2021, 27, 12144-12155.	3.3	4
230	Ultraflat nanopores for wafer-scale molecular-electronic applications. , 2015, , .		3
231	Size Matters: Influence of Goldâ€toâ€Ligand Ratio and Sulfurâ€Sulfur Distance of Linear Thioether Heptamers on the Size of Gold Nanoparticles. Helvetica Chimica Acta, 2017, 100, e1600395.	1.6	3
232	Slow Formation of Pseudorotaxanes in Water. European Journal of Organic Chemistry, 2019, 2019, 3384-3390.	2.4	3
233	The Enantiomers of Trinorbornane and Derivatives Thereof. Helvetica Chimica Acta, 2020, 103, e2000019.	1.6	3
234	Sulfone "Geläder―Helices: Revealing Unexpected Parameters Controlling the Enantiomerization Process. Journal of Organic Chemistry, 2021, 86, 5431-5442.	3.2	3

#	Article	IF	Citations
235	Monofunctionalized Gold Nanoparticles: Fabrication and Applications. Chimia, 2021, 75, 414.	0.6	3
236	Reaktionsverfolgung von Festphasensynthesen in selbstassemblierenden Monolagen mit oberflĤhenverstĤkter Ramanâ€Spektroskopie. Angewandte Chemie, 2021, 133, 18126-18134.	2.0	3
237	An Ortho â€Tetraphenyleneâ€Based "Geläder―Architecture Consisting Exclusively of 52 sp 2 â€Hybridized Atoms. Chemistry - A European Journal, 2021, 27, 13258-13267.	C _{3.3}	3
238	From the Loom to the Laboratory: Molecular Textiles. Chimia, 2019, 73, 455.	0.6	3
239	Electronic responses of donor acceptor substituted twisted biphenyls. Proceedings of SPIE, 2010, , .	0.8	2
240	Long-pulse laser launch and ionization of tailored large neutral silver nanoparticles with atomic mass assignment. Nanoscale, 2017, 9, 9175-9180.	5.6	2
241	Alkyneâ∈Monofunctionalized Gold Nanoparticles as Massive Molecular Building Blocks. European Journal of Inorganic Chemistry, 2020, 2020, 2325-2334.	2.0	2
242	Scalable, Nanometerâ€Accurate Fabrication of Allâ€Dielectric Metasurfaces with Narrow Resonances Tunable from Near Infrared to Visible Wavelengths. Advanced Photonics Research, 0, , 2200014.	3.6	2
243	Functional Nanopores: A Solid-state Concept for Artificial Reaction Compartments and Molecular Factories. Chimia, 2016, 70, 432.	0.6	1
244	Aqueous assembly of a (pseudo)rotaxane with a donor–π–acceptor axis formed by a Knoevenagel condensation. Organic Chemistry Frontiers, 2021, 8, 4399-4407.	4.5	1
245	Bromine-Catalyzed Conversion of S-tert-Butyl Groups into Versatile and, for Self-Assembly Processes Accessible, Acetyl-Protected Thiols ChemInform, 2005, 36, no.	0.0	O
246	Matter wave interferometry: Exploring the importance of the internal molecular properties. , 2011, , .		0
247	2-(3-Cyanopropyldimethylsilyl)ethyl as a Polar Sulfur Protecting Group. Synthesis, 2019, 51, 4153-4164.	2.3	O
248	Otto Stern's Legacy in Quantum Optics: Matter Waves and Deflectometry. , 2021, , 547-573.		0
249	Induced axial chirality by a tight belt: naphthalene chromophores fixed in a 2,5-substituted cofacial <i>para</i> -phenylene–ethynylene framework. Journal of Materials Chemistry C, 2021, 9, 16199-16207.	5.5	0
250	Naphthalene Bisimides on the Way to Opto-electronic Devices. , 2007, , .		0
251	Naphthalene Bisimides: on the Way to Ultrafast Opto-electronic Devices. Springer Series in Chemical Physics, 2009, , 628-630.	0.2	O
252	Frontispiece: Spatial and Lateral Control of Functionality by Rigid Molecular Platforms. Chemistry - A European Journal, 2017, 23, .	3.3	0

#	Article	IF	CITATIONS
253	Vibrational Excitations & Conformational Switching in Single-Molecule Junctions., 0, , .		0
254	Vibrational Excitations & Conformational Switching in Single-Molecule Junctions. , 0, , .		0