Nicholas R Leslie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62686/publications.pdf

Version: 2024-02-01

83 papers 8,307 citations

45 h-index

61687

80 g-index

86 all docs 86 docs citations

86 times ranked 12978 citing authors

#	Article	IF	CITATIONS
1	Microfluidic system for near-patient extraction and detection of miR-122 microRNA biomarker for drug-induced liver injury diagnostics. Biomicrofluidics, 2022, 16, 024108.	1.2	6
2	Kinases/Phosphatases Phosphoinositide-Dependent Protein Kinases. , 2021, , 369-372.		0
3	Phosphoinositide-Dependent Protein Kinases. , 2021, , .		1
4	Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Advances in Biological Regulation, 2020, 75, 100658.	1.4	66
5	PIK3CA mutation enrichment and quantitation from blood and tissue. Scientific Reports, 2020, 10, 17082.	1.6	15
6	3D Printing in Suspension Baths: Keeping the Promises of Bioprinting Afloat. Trends in Biotechnology, 2020, 38, 584-593.	4.9	183
7	PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discovery, 2019, 9, 1306-1323.	7.7	54
8	Mechanisms of PTEN loss in cancer: It's all about diversity. Seminars in Cancer Biology, 2019, 59, 66-79.	4.3	214
9	SWAP70 undergoes dynamic conformational regulation at the leading edge of migrating cells. FEBS Letters, 2019, 593, 395-405.	1.3	6
10	Identification of a PTEN mutation with reduced protein stability, phosphatase activity, and nuclear localization in Hong Kong patients with autistic features, neurodevelopmental delays, and macrocephaly. Autism Research, 2018, 11, 1098-1109.	2.1	22
11	A simple and robust real-time qPCR method for the detection of PIK3CA mutations. Scientific Reports, 2018, 8, 4290.	1.6	28
12	PTEN., 2018,, 4274-4279.		0
13	Prostate cancer, PI3K, PTEN and prognosis. Clinical Science, 2017, 131, 197-210.	1.8	146
14	Importin-11 keeps PTEN safe from harm. Journal of Cell Biology, 2017, 216, 539-541.	2.3	1
15	GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Advances in Biological Regulation, 2017, 65, 5-15.	1.4	328
16	The PTEN protein: cellular localization and post-translational regulation. Biochemical Society Transactions, 2016, 44, 273-278.	1.6	43
17	Controlling PTEN (Phosphatase and Tensin Homolog) Stability. Journal of Biological Chemistry, 2016, 291, 18465-18473.	1.6	14
18	Inherited PTEN mutations and the prediction of phenotype. Seminars in Cell and Developmental Biology, 2016, 52, 30-38.	2.3	78

#	Article	IF	CITATIONS
19	In Cell and In Vitro Assays to Measure PTEN Ubiquitination. Methods in Molecular Biology, 2016, 1388, 155-165.	0.4	7
20	Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates. Methods in Molecular Biology, 2016, 1447, 95-105.	0.4	2
21	Assaying PTEN catalysis in vitro. Methods, 2015, 77-78, 51-57.	1.9	9
22	Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. Journal of Medical Genetics, 2015, 52, 128-134.	1.5	99
23	Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication, 2015, 7, 045012.	3.7	320
24	Yeast-based methods to assess PTEN phosphoinositide phosphatase activity in vivo. Methods, 2015, 77-78, 172-179.	1.9	13
25	Class I PI 3-kinases: Function and evolution. Advances in Biological Regulation, 2015, 59, 53-64.	1.4	66
26	PTEN inhibitors: An evaluation of current compounds. Advances in Biological Regulation, 2015, 57, 102-111.	1.4	57
27	Phosphorylation by Akt within the ST loop of AMPK- $\hat{l}\pm 1$ down-regulates its activation in tumour cells. Biochemical Journal, 2014, 459, 275-287.	1.7	176
28	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	1.6	50
29	Mutant PTEN in Cancer: Worse Than Nothing. Cell, 2014, 157, 527-529.	13.5	13
30	MC1R Is a Potent Regulator of PTEN after UV Exposure in Melanocytes. Molecular Cell, 2013, 51, 409-422.	4.5	122
31	Where Is PTEN?. Science, 2013, 341, 355-356.	6.0	10
32	PtdIns(4,5)P2-Mediated Cell Signaling: Emerging Principles and PTEN as a Paradigm for Regulatory Mechanism. Advances in Experimental Medicine and Biology, 2013, 991, 85-104.	0.8	46
33	Cross Talk between the Akt and p38 $\hat{l}\pm$ Pathways in Macrophages Downstream of Toll-Like Receptor Signaling. Molecular and Cellular Biology, 2013, 33, 4152-4165.	1.1	74
34	C1-Ten Is a Protein Tyrosine Phosphatase of Insulin Receptor Substrate 1 (IRS-1), Regulating IRS-1 Stability and Muscle Atrophy. Molecular and Cellular Biology, 2013, 33, 1608-1620.	1.1	29
35	Phosphorylation of the Actin Binding Protein Drebrin at S647 Is Regulated by Neuronal Activity and PTEN. PLoS ONE, 2013, 8, e71957.	1.1	33
36	IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold. Journal of Biological Chemistry, 2012, 287, 22483-22496.	1.6	23

#	Article	IF	CITATIONS
37	PTEN Protein Phosphatase Activity Correlates with Control of Gene Expression and Invasion, a Tumor-Suppressing Phenotype, But Not with AKT Activity. Science Signaling, 2012, 5, ra18.	1.6	107
38	PTEN: An Intercellular Peacekeeper?. Science Signaling, 2012, 5, pe50.	1.6	11
39	Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Advances in Biological Regulation, 2012, 52, 205-213.	1.4	30
40	The PTEN and Myotubularin Phosphoinositide 3-Phosphatases: Linking Lipid Signalling to Human Disease. Sub-Cellular Biochemistry, 2012, 58, 281-336.	1.0	16
41	Non-genomic loss of PTEN function in cancer: not in my genes. Trends in Pharmacological Sciences, 2011, 32, 131-140.	4.0	137
42	A Screen for Novel Phosphoinositide 3-kinase Effector Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.003178.	2.5	26
43	Indirect mechanisms of carcinogenesis via downregulation of PTEN function. Advances in Enzyme Regulation, 2010, 50, 112-118.	2.9	13
44	Mechanism of Activation of PKB/Akt by the Protein Phosphatase Inhibitor Calyculin A. Cell Biochemistry and Biophysics, 2010, 58, 147-156.	0.9	6
45	Migration Stimulating Factor (MSF) promotes fibroblast migration by inhibiting AKT. Cellular Signalling, 2010, 22, 1655-1659.	1.7	11
46	Leptin Regulates AMPA Receptor Trafficking via PTEN Inhibition. Journal of Neuroscience, 2010, 30, 4088-4101.	1.7	104
47	Ubiquitination of PTEN (Phosphatase and Tensin Homolog) Inhibits Phosphatase Activity and Is Enhanced by Membrane Targeting and Hyperosmotic Stress. Journal of Biological Chemistry, 2010, 285, 12620-12628.	1.6	45
48	Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO Journal, 2009, 28, 1505-1517.	3.5	302
49	MyosinV controls PTEN function and neuronal cell size. Nature Cell Biology, 2009, 11, 1191-1196.	4.6	82
50	The significance of PTEN's protein phosphatase activity. Advances in Enzyme Regulation, 2009, 49, 190-196.	2.9	47
51	P-REX2a Driving Tumorigenesis by PTEN Inhibition. Science Signaling, 2009, 2, pe68.	1.6	6
52	Use of Akt Inhibitor and a Drug-resistant Mutant Validates a Critical Role for Protein Kinase B/Akt in the Insulin-dependent Regulation of Glucose and System A Amino Acid Uptake. Journal of Biological Chemistry, 2008, 283, 27653-27667.	1.6	96
53	PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. Journal of Clinical Investigation, 2008, 118, 3762-3774.	3.9	403
54	Chemoresistant KM12C Colon Cancer Cells Are Addicted to Low Cyclic AMP Levels in a Phosphodiesterase 4–Regulated Compartment via Effects on Phosphoinositide 3-Kinase. Cancer Research, 2007, 67, 5248-5257.	0.4	68

#	Article	IF	CITATIONS
55	PTEN is destabilized by phosphorylation on Thr366. Biochemical Journal, 2007, 405, 439-444.	1.7	140
56	Substrate specificity and acute regulation of the tumour suppressor phosphatase, PTEN. Biochemical Society Symposia, 2007, 74, 69-80.	2.7	14
57	Differential redox regulation within the PTP superfamily. Cellular Signalling, 2007, 19, 1521-1530.	1.7	89
58	PtdIns(3,4,5)P3-Dependent and -Independent Roles for PTEN in the Control of Cell Migration. Current Biology, 2007, 17, 115-125.	1.8	178
59	Stimulation of PI 3-kinase signaling via inhibition of the tumor suppressor phosphatase, PTEN. Advances in Enzyme Regulation, 2007, 47, 184-194.	2.9	45
60	The Redox Regulation of PI 3-Kinase–Dependent Signaling. Antioxidants and Redox Signaling, 2006, 8, 1765-1774.	2.5	134
61	A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic \hat{l}^2 -cells. EMBO Journal, 2006, 25, 2377-2387.	3.5	103
62	Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. Journal of Cell Science, 2006, 119, 5160-5168.	1.2	137
63	Hypomorphic Mutation of PDK1 Suppresses Tumorigenesis in PTEN+/â^² Mice. Current Biology, 2005, 15, 1839-1846.	1.8	141
64	Phosphoinositide-Dependent Protein Kinases. , 2004, , 292-296.		0
64	Phosphoinositide-Dependent Protein Kinases., 2004, , 292-296. Small Molecule Antagonists of the Ïf-1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64, 4875-4886.	0.4	0
	Small Molecule Antagonists of the $\ddot{l}f$ -1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64,	0.4	
65	Small Molecule Antagonists of the Ïf-1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64, 4875-4886. The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. Journal of		164
65	Small Molecule Antagonists of the Ïf-1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64, 4875-4886. The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. Journal of Cell Biology, 2004, 166, 213-223. PTEN M-CBR3, a Versatile and Selective Regulator of Inositol 1,3,4,5,6-Pentakisphosphate	2.3	1,013
65 66 67	Small Molecule Antagonists of the Ïf-1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64, 4875-4886. The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. Journal of Cell Biology, 2004, 166, 213-223. PTEN M-CBR3, a Versatile and Selective Regulator of Inositol 1,3,4,5,6-Pentakisphosphate (Ins(1,3,4,5,6)P5). Journal of Biological Chemistry, 2004, 279, 1116-1122. PTEN function: how normal cells control it and tumour cells lose it. Biochemical Journal, 2004, 382,	2.3	1,013 25
65 66 67 68	Small Molecule Antagonists of the Ïf-1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64, 4875-4886. The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. Journal of Cell Biology, 2004, 166, 213-223. PTEN M-CBR3, a Versatile and Selective Regulator of Inositol 1,3,4,5,6-Pentakisphosphate (Ins(1,3,4,5,6)P5). Journal of Biological Chemistry, 2004, 279, 1116-1122. PTEN function: how normal cells control it and tumour cells lose it. Biochemical Journal, 2004, 382, 1-11. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochemical Journal,	2.3 1.6 1.7	1,013 25 448
65 66 67 68	Small Molecule Antagonists of the Ĭf-1 Receptor Cause Selective Release of the Death Program in Tumor and Self-Reliant Cells and Inhibit Tumor Growth in Vitro and in Vivo. Cancer Research, 2004, 64, 4875-4886. The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. Journal of Cell Biology, 2004, 166, 213-223. PTEN M-CBR3, a Versatile and Selective Regulator of Inositol 1,3,4,5,6-Pentakisphosphate (Ins(1,3,4,5,6)P5). Journal of Biological Chemistry, 2004, 279, 1116-1122. PTEN function: how normal cells control it and tumour cells lose it. Biochemical Journal, 2004, 382, 1-11. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochemical Journal, 2004, 377, 653-663. The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochemical	2.3 1.6 1.7	1,013 25 448

#	Article	IF	CITATION
73	Decreased insulin binding to mononuclear leucocytes and erythrocytes from dogs after S-nitroso-N-acetypenicillamine administration. BMC Biochemistry, 2002, 3, 1.	4.4	15
74	Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases. BMC Biochemistry, 2002, 3, 20.	4.4	39
75	Phosphoinositide-Regulated Kinases and Phosphoinositide Phosphatases. Chemical Reviews, 2001, 101, 2365-2380.	23.0	112
76	TPIP: a novel phosphoinositide 3-phosphatase. Biochemical Journal, 2001, 360, 277-283.	1.7	136
77	Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochemical Journal, 2001, 357, 427.	1.7	40
78	TPIP: a novel phosphoinositide 3-phosphatase. Biochemical Journal, 2001, 360, 277.	1.7	95
79	Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochemical Journal, 2001, 357, 427-435.	1.7	61
80	Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochemical Journal, 2000, 346, 827.	1.7	22
81	Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochemical Journal, 2000, 346, 827-833.	1.7	74
82	\hat{l}^2 1-Integrin and PTEN control the phosphorylation of protein kinase C. Biochemical Journal, 2000, 352, 425-433.	1.7	31
83	A role for the actin cytoskeleton in the hormonal and growth-factor-mediated activation of protein kinase B. Biochemical Journal, 2000, 352, 617-622.	1.7	49