Guanyu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6267237/publications.pdf

Version: 2024-02-01

567281 752698 20 729 15 20 citations h-index g-index papers 22 22 22 1086 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Research, 2023, 16, 4546-4553.	10.4	11
2	Insights into Tuning of Moâ€Based Structures toward Enhanced Electrocatalytic Performance of Nitrogenâ€toâ€Ammonia Conversion. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	3
3	Elucidating Reaction Pathways of the CO ₂ Electroreduction via Tailorable Tortuosities and Oxidation States of Cu Nanostructures. Advanced Functional Materials, 2022, 32, .	14.9	9
4	Single-Ni Sites Embedded in Multilayer Nitrogen-Doped Graphene Derived from Amino-Functionalized MOF for Highly Selective CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3792-3801.	6.7	24
5	Direct Observation of Oxygen Evolution and Surface Restructuring on Mn ₂ O ₃ Nanocatalysts Using <i>In</i> Ci>Situ Transmission Electron Microscopy. Nano Letters, 2021, 21, 7012-7020.	9.1	19
6	Manipulating Intermediates at the Au–TiO ₂ Interface over InP Nanopillar Array for Photoelectrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 11416-11428.	11.2	48
7	Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews, 2021, 50, 10674-10699.	38.1	63
8	Rational Synthesis of Amorphous Ironâ€Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield. Angewandte Chemie - International Edition, 2020, 59, 1171-1175.	13.8	32
9	Rational Synthesis of Amorphous Ironâ€Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield. Angewandte Chemie, 2020, 132, 1187-1191.	2.0	4
10	Research advances towards large-scale solar hydrogen production from water. EnergyChem, 2019, 1, 100014.	19.1	130
11	Revealing Atomic Structure and Oxidation States of Dopants in Charge-Ordered Nanoparticles for Migration-Promoted Oxygen-Exchange Capacity. Chemistry of Materials, 2019, 31, 5769-5777.	6.7	10
12	Oneâ€Step Rapid and Scalable Flame Synthesis of Efficient WO ₃ Photoanodes for Water Splitting. ChemPlusChem, 2018, 83, 569-576.	2.8	31
13	Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation:ÂA physical and chemical synergistic approach. Nano Energy, 2018, 53, 745-752.	16.0	29
14	A Review of Metal―and Metalâ€Oxideâ€Based Heterogeneous Catalysts for Electroreduction of Carbon Dioxide. Advanced Sustainable Systems, 2018, 2, 1800028.	5.3	44
15	Superamphiphobic Bionic Proboscis for Contaminationâ€Free Manipulation of Nano and Core–Shell Droplets. Small, 2017, 13, 1603688.	10.0	34
16	Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures. ACS Nano, 2017, 11, 587-596.	14.6	104
17	Robust Subâ∈Monolayers of Co ₃ O ₄ Nanoâ∈Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	19.5	44
18	Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly. Nanoscale, 2016, 8, 6085-6093.	5.6	29

#	Article	IF	CITATIONS
19	Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flameâ€Made Manganese Oxide Nanocrystals. ChemSusChem, 2015, 8, 4162-4171.	6.8	30
20	Flexible Transparent Hierarchical Nanomesh for Rose Petalâ€Like Droplet Manipulation and Lossless Transfer. Advanced Materials Interfaces, 2015, 2, 1500071.	3.7	31