Ivan DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6266834/publications.pdf

Version: 2024-02-01

361413 265206 2,128 44 20 citations h-index papers

g-index 49 49 49 1519 all docs docs citations times ranked citing authors

42

#	Article	IF	CITATIONS
1	Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge. Veterinary Microbiology, 2007, 123, 69-85.	1.9	271
2	The challenge of PRRS immunology. Veterinary Journal, 2008, 177, 345-351.	1.7	269
3	Immune responses of pigs after experimental infection with a European strain of Porcine reproductive and respiratory syndrome virus. Journal of General Virology, 2005, 86, 1943-1951.	2.9	178
4	Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs. Virology, 2006, 351, 249-259.	2.4	144
5	Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Research, 2010, 154, 123-132.	2.2	115
6	Granuloma Encapsulation Is a Key Factor for Containing Tuberculosis Infection in Minipigs. PLoS ONE, 2010, 5, e10030.	2.5	97
7	Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates. Veterinary Research, 2011, 42, 9.	3.0	90
8	Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets. Veterinary Immunology and Immunopathology, 2009, 129, 101-107.	1.2	81
9	Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection. Veterinary Research, 2012, 43, 30.	3.0	80
10	Genetic and immunobiological diversities of porcine reproductive and respiratory syndrome genotype I strains. Veterinary Microbiology, 2011, 150, 49-62.	1.9	78
11	Use of ELISPOT and ELISA to evaluate IFN- \hat{l}^3 , IL-10 and IL-4 responses in conventional pigs. Veterinary Immunology and Immunopathology, 2005, 106, 107-112.	1.2	73
12	Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine, 2011, 29, 5379-5385.	3.8	69
13	In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus. Vaccine, 2009, 27, 5603-5611.	3.8	68
14	Effects of challenge with a virulent genotype II strain of porcine reproductive and respiratory syndrome virus on piglets vaccinated with an attenuated genotype I strain vaccine. Veterinary Journal, 2012, 193, 92-96.	1.7	64
15	Interferon-gamma induction correlates with protection by DNA vaccine expressing E2 glycoprotein against classical swine fever virus infection in domestic pigs. Veterinary Microbiology, 2010, 142, 51-58.	1.9	57
16	Evolution of ORF5 of Spanish porcine reproductive and respiratory syndrome virus strains from 1991 to 2005. Virus Research, 2006, 115, 198-206.	2.2	50
17	Vaccination with a genotype 1 modified live vaccine against porcine reproductive and respiratory syndrome virus significantly reduces viremia, viral shedding and transmission of the virus in a quasi-natural experimental model. Veterinary Microbiology, 2015, 175, 7-16.	1.9	44
18	Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN- \hat{l}^3 and IL-10. Viruses, 2013, 5, 663-677.	3.3	38

#	Article	IF	CITATIONS
19	Use of H-Index and Other Bibliometric Indicators to Evaluate Research Productivity Outcome on Swine Diseases. PLoS ONE, 2016, 11, e0149690.	2.5	28
20	Commercial spray-dried porcine plasma does not transmit porcine circovirus type 2 in weaned pigs challenged with porcine reproductive and respiratory syndrome virus. Veterinary Journal, 2011, 190, e16-e20.	1.7	21
21	High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Veterinary Research, 2019, 15, 441.	1.9	18
22	A retrospective study of porcine epidemic diarrhoea virus (PEDV) reveals the presence of swine enteric coronavirus (SeCoV) since 1993 and the recent introduction of a recombinant PEDVâ€SeCoV in Spain. Transboundary and Emerging Diseases, 2020, 67, 2911-2922.	3.0	18
23	Comparison of different vaccination schedules for sustaining the immune response against porcine reproductive and respiratory syndrome virus. Veterinary Journal, 2013, 197, 438-444.	1.7	16
24	Welfare Benefits of Intradermal Vaccination of Piglets. Animals, 2020, 10, 1898.	2.3	16
25	The use of H-index to assess research priorities in poultry diseases. Poultry Science, 2020, 99, 6503-6512.	3.4	15
26	Activation of pro- and anti-inflammatory responses in lung tissue injury during the acute phase of PRRSV-1 infection with the virulent strain Lena. Veterinary Microbiology, 2020, 246, 108744.	1.9	13
27	Transmission of Porcine reproductive and respiratory syndrome virus $1\ \mathrm{to}$ and from vaccinated pigs in a one-to-one model. Veterinary Microbiology, 2017, 201, 18-25.	1.9	12
28	Immunization with DNA Vaccines Containing Porcine Reproductive and Respiratory Syndrome Virus Open Reading Frames 5, 6, and 7 May Be Related to the Exacerbation of Clinical Disease after an Experimental Challenge. Viral Immunology, 2013, 26, 93-101.	1.3	11
29	Comparison of two commercial enzyme-linked immunosorbent assays for the diagnosis of <i>Porcine reproductive and respiratory syndrome virus $\langle i \rangle$ infection. Journal of Veterinary Diagnostic Investigation, 2012, 24, 344-348.</i>	1.1	9
30	Immune response development after vaccination of 1-day-old na \tilde{A} -ve pigs with a Porcine Reproductive and Respiratory Syndrome 1-based modified live virus vaccine. Porcine Health Management, 2019, 5, 2.	2.6	9
31	Using commercial ELISAs to assess humoral response in sows repeatedly vaccinated with modified live porcine reproductive and respiratory syndrome virus. Veterinary Record, 2020, 186, 123-123.	0.3	9
32	Porcine reproductive and respiratory syndrome virus impacts on gut microbiome in a strain virulenceâ€dependent fashion. Microbial Biotechnology, 2022, 15, 1007-1016.	4.2	9
33	Impact of Cryopreservation on Viability, Phenotype, and Functionality of Porcine PBMC. Frontiers in Immunology, 2021, 12, 765667.	4.8	7
34	Subclinical porcine circovirus type 2 infection does not modulate the immune response to an Aujeszky's disease virus vaccine. Veterinary Journal, 2012, 194, 84-88.	1.7	6
35	Distinct functional enrichment of transcriptional signatures in pigs with high and low IFN-gamma responses after vaccination with a porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Research, 2016, 47, 104.	3.0	6
36	Next-generation sequencing as a tool for the study of Porcine reproductive and respiratory syndrome virus (PRRSV) macro- and micro- molecular epidemiology. Veterinary Microbiology, 2017, 209, 5-12.	1.9	6

#	Article	IF	CITATIONS
37	Estimation of the transmission parameters for swine influenza and porcine reproductive and respiratory syndrome viruses in pigs from weaning to slaughter under natural conditions. Preventive Veterinary Medicine, 2017, 138, 147-155.	1.9	5
38	Comparison of cytokine profiles in peripheral blood mononuclear cells between piglets born from Porcine circovirus 2 vaccinated and non-vaccinated sows. Veterinary Microbiology, 2018, 214, 148-153.	1.9	5
39	Development of Pig Conventional Dendritic Cells From Bone Marrow Hematopoietic Cells in vitro. Frontiers in Immunology, 2020, $11,553859$.	4.8	4
40	Immune response does not prevent homologous <i>Porcine epidemic diarrhoea</i> virus reinfection five months after the initial challenge. Transboundary and Emerging Diseases, 2022, 69, 997-1009.	3.0	4
41	First identification and characterization of rotavirus H in swine in Spain. Transboundary and Emerging Diseases, 2021, 68, 3055-3069.	3.0	3
42	Assessment of three commercial ELISAs for the detection of antibodies against Porcine epidemic diarrhea virus at different stages of the immune response. Veterinary Immunology and Immunopathology, 2021, 234, 110206.	1.2	2
43	GP5 and M proteins of prrsv could be related to inflammatory responses. Journal of Comparative Pathology, 2009, 141, 271.	0.4	0
44	Adjuvant effect of porcine chemokines on DNA vaccination of pigs. Veterinary Immunology and Immunopathology, 2009, 128, 328.	1.2	0