Amit Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6265002/publications.pdf

Version: 2024-02-01

304743 345221 2,979 35 22 36 citations h-index g-index papers 39 39 39 4679 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Proton-Coupled Electron Transfer. Chemical Reviews, 2012, 112, 4016-4093.	47.7	1,389
2	Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chemistry of Materials, 2017, 29, 2074-2080.	6.7	277
3	Nonaqueous Catalytic Water Oxidation. Journal of the American Chemical Society, 2010, 132, 17670-17673.	13.7	141
4	Importance of Electrode Preparation Methodologies in Supercapacitor Applications. ACS Omega, 2017, 2, 8039-8050.	3.5	139
5	A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions. Journal of Materials Chemistry A, 2016, 4, 3655-3660.	10.3	79
6	Role of graphite precursor and sodium nitrate in graphite oxide synthesis. RSC Advances, 2014, 4, 15138.	3.6	78
7	Synergistic effect of alkali halide and Lewis base on the catalytic synthesis of cyclic carbonate from CO2 and epoxide. Chemical Physics Letters, 2011, 512, 273-277.	2.6	70
8	Physisorbed Hydroquinone on Activated Charcoal as a Supercapacitor: An Application of Proton-Coupled Electron Transfer. Journal of Physical Chemistry C, 2015, 119, 11382-11390.	3.1	62
9	Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers. Journal of Physical Chemistry B, 2006, 110, 1301-1308.	2.6	58
10	Redox-active, pyrene-based pristine porous organic polymers for efficient energy storage with exceptional cyclic stability. Chemical Communications, 2018, 54, 6796-6799.	4.1	56
11	Role of Nucleobase Energetics and Nucleobase Interactions in Single-Stranded Peptide Nucleic Acid Charge Transfer. Journal of the American Chemical Society, 2009, 131, 6498-6507.	13.7	55
12	Charge Transfer through Single-Stranded Peptide Nucleic Acid Composed of Thymine Nucleotides. Journal of Physical Chemistry C, 2008, 112, 7233-7240.	3.1	50
13	Electrochemical Formation of Fe ^V (O) and Mechanism of Its Reaction with Water During Oâ^'O Bond Formation. Chemistry - A European Journal, 2017, 23, 3414-3424.	3.3	50
14	Distance Dependence of the Charge Transfer Rate for Peptide Nucleic Acid Monolayers. Journal of Physical Chemistry B, 2010, 114, 14140-14148.	2.6	45
15	Evidence for a Near-Resonant Charge Transfer Mechanism for Double-Stranded Peptide Nucleic Acid. Journal of the American Chemical Society, 2011, 133, 62-72.	13.7	45
16	A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst, The, 2014, 139, 5747-5754.	3.5	44
17	Multiple Pathways for Benzyl Alcohol Oxidation by RuVâ•O3+and RulVâ•O2+. Inorganic Chemistry, 2011, 50, 1167-1169.	4.0	30
18	Aminophenyl-substituted cobalt(<scp>iii</scp>) corrole: a bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions. Dalton Transactions, 2019, 48, 11345-11351.	3.3	28

#	Article	IF	Citations
19	Cobalt Phosphonates as Precatalysts for Water Oxidation: Role of Pore Size in Catalysis. Chemistry - A European Journal, 2017, 23, 12519-12526.	3.3	26
20	Deciphering the Incredible Supercapacitor Performance of Conducting Biordered Ultramicroporous Graphitic Carbon. ACS Applied Energy Materials, 2021, 4, 4416-4427.	5.1	24
21	Highly conducting reduced graphene synthesis via low temperature chemically assisted exfoliation and energy storage application. Journal of Materials Chemistry A, 2015, 3, 18557-18563.	10.3	23
22	Proton conduction through oxygen functionalized few-layer graphene. Chemical Communications, 2016, 52, 12661-12664.	4.1	23
23	Nano "Koosh Balls―of Mesoporous MnO ₂ : Improved Supercapacitor Performance through Superior Ion Transport. Chemistry - A European Journal, 2017, 23, 4216-4226.	3.3	23
24	Understanding Integrated Graphene–MOF Nanostructures as Binder- and Additive-Free High-Performance Supercapacitors at Commercial Scale Mass Loading. ACS Applied Energy Materials, 2021, 4, 14249-14259.	5.1	23
25	Uniform spheroidal nanoassemblies of magnetite using Tween surfactants: influence of surfactant structure on the morphology and electrochemical performance. Journal of Materials Chemistry C, 2015, 3, 1610-1618.	5 . 5	22
26	Synergistic Effect of Oxygen and Nitrogen Co-doping in Metal–Organic Framework-Derived Ultramicroporous Carbon for an Exceptionally Stable Solid-State Supercapacitor via a "Proton Trap― Mechanism. Energy & Fuels, 2021, 35, 10262-10273.	5.1	19
27	Immense Microporous Carbon@Hydroquinone Metamorphosed from Nonporous Carbon As a Supercapacitor with Remarkable Energy Density and Cyclic Stability. ACS Sustainable Chemistry and Engineering, 2018, 6, 11367-11379.	6.7	16
28	Selective synthesis of single layer translucent cobalt hydroxide for the efficient oxygen evolution reaction. Chemical Communications, 2019, 55, 2230-2233.	4.1	16
29	Electrochemical Synthesis of Dimeric 2-Oxindole Sharing Vicinal Quaternary Centers Employing Proton-Coupled Electron Transfer. Journal of Organic Chemistry, 2020, 85, 14926-14936.	3.2	14
30	Covalently Functionalized Hydroxyl-Rich Few-Layer Graphene for Solid-State Proton Conduction and Supercapacitor Applications. Journal of Physical Chemistry C, 2022, 126, 6135-6146.	3.1	14
31	Unravelling the role of temperature in a redox supercapacitor composed of multifarious nanoporous carbon@hydroquinone. RSC Advances, 2020, 10, 1799-1810.	3.6	13
32	Tuning water oxidation reactivity by employing surfactant directed synthesis of porous Co ₃ O ₄ nanomaterials. New Journal of Chemistry, 2019, 43, 6540-6548.	2.8	12
33	Oxidative electro-organic synthesis of dimeric hexahydropyrrolo-[2,3- <i>b</i> jindole alkaloids involving PCET: total synthesis of (±)-folicanthine. Organic and Biomolecular Chemistry, 2021, 19, 9390-9395.	2.8	6
34	Acid-Base Synergism in Nitrogen- and Oxygen-Functionalized Few-Layer Graphene for Low-Activation Barrier Solid-State Proton Conduction. Journal of Physical Chemistry C, 2022, 126, 10534-10545.	3.1	4
35	Proton reduction by a bimetallic zinc selenolate electrocatalyst. RSC Advances, 2022, 12, 3801-3808.	3.6	3