James C Hone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264135/publications.pdf

Version: 2024-02-01

499 papers 113,117 citations

125 h-index 330 g-index

519 all docs

519 docs citations

519 times ranked

68673 citing authors

#	Article	IF	CITATIONS
1	Making high-quality quantum microwave devices with van der Waals superconductors. Journal of Physics Condensed Matter, 2022, 34, 103001.	1.8	2
2	Artificial Neuron Networks Enabled Identification and Characterizations of 2D Materials and van der Waals Heterostructures. ACS Nano, 2022, 16, 2721-2729.	14.6	22
3	Electroluminescence of atoms in a graphene nanogap. Science Advances, 2022, 8, eabj1742.	10.3	1
4	Identifying the Transition Order in an Artificial Ferroelectric van der Waals Heterostructure. Nano Letters, 2022, 22, 1265-1269.	9.1	23
5	Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nature Nanotechnology, 2022, 17, 367-371.	31.5	167
6	Crossover between strongly coupled and weakly coupled exciton superfluids. Science, 2022, 375, 205-209.	12.6	33
7	Mixed-Dimensional $10/2D$ van der Waals Heterojunction Diodes and Transistors in the Atomic Limit. ACS Nano, 2022, 16, 1639-1648.	14.6	15
8	Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science, 2022, 375, 437-441.	12.6	61
9	Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nature Communications, 2022, 13, 542.	12.8	23
10	In-Plane Anisotropy in Biaxial ReS ₂ Crystals Probed by Nano-Optical Imaging of Waveguide Modes. ACS Photonics, 2022, 9, 443-451.	6.6	12
11	Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl ₃ Heterostructures. Nano Letters, 2022, 22, 1946-1953.	9.1	25
12	Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science, 2022, 375, 1398-1402.	12.6	26
13	Near-field nanoscopy of excitons and ultrafast interlayer dynamics in van der Waals crystals., 2022,,.		O
14	Dipolar excitonic insulator in a moiré lattice. Nature Physics, 2022, 18, 395-400.	16.7	65
15	Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors. Nano Letters, 2022, 22, 2843-2850.	9.1	17
16	Improving the Optical Quality of MoSe ₂ and WS ₂ Monolayers with Complete <i>h</i> -BN Encapsulation by High-Temperature Annealing. ACS Applied Materials & Diterfaces, 2022, 14, 2255-2262.	8.0	7
17	Free Trions with Near-Unity Quantum Yield in Monolayer MoSe ₂ . ACS Nano, 2022, 16, 140-147.	14.6	19
18	Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor. Science Advances, 2022, 8, eabi8481.	10.3	15

#	Article	IF	CITATIONS
19	Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Excitonâ€Enhanced Second Harmonic Generation. Advanced Optical Materials, 2022, 10, .	7. 3	9
20	Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nature Nanotechnology, 2022, 17, 577-582.	31.5	22
21	Phonon-Limited Mobility in <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/Math/Mc"><mml:mrow><mml:mi>h</mml:mi></mml:mrow></mml:math> -BN Encapsulated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi>BBN</mml:math>	7.8	5
22	Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly. ACS Omega, 2022, 7, 22626-22632.	3.5	5
23	Observation of Wigner cusps in a metallic carbon nanotube. Solid State Communications, 2022, 353, 114834.	1.9	0
24	Surface plasmons induce topological transition in graphene/ $\hat{l}\pm$ -MoO3 heterostructures. Nature Communications, 2022, 13, .	12.8	30
25	Focusâ€Tunable Planar Lenses by Controlled Carriers over Exciton. Advanced Optical Materials, 2021, 9, 2001526.	7.3	5
26	Hyperbolic Cooper-Pair Polaritons in Planar Graphene/Cuprate Plasmonic Cavities. Nano Letters, 2021, 21, 308-316.	9.1	13
27	Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 1245-1252.	8.0	28
28	Optical parametric amplification by monolayer transition metal dichalcogenides. Nature Photonics, 2021, 15, 6-10.	31.4	74
29	Antiferromagnetic proximity coupling between semiconductor quantum emitters in WSe2 and van der Waals ferromagnets. Nanoscale, 2021, 13, 832-841.	5.6	9
30	Tuning layer-hybridized moir \tilde{A} \otimes excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16, 52-57.	31.5	60
31	Moir \tilde{A} © metrology of energy landscapes in van der Waals heterostructures. Nature Communications, 2021, 12, 242.	12.8	60
32	Manipulation of Exciton Dynamics and Annihilation in Single-Layer WSe2 using a Toroidal Dielectric Metasurface., 2021,,.		0
33	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nature Communications, 2021, 12, 871.	12.8	29
34	Dual-Gated Graphene Devices for Near-Field Nano-imaging. Nano Letters, 2021, 21, 1688-1693.	9.1	13
35	Deep moir \tilde{A} © potentials in twisted transition metal dichalcogenide bilayers. Nature Physics, 2021, 17, 720-725.	16.7	124
36	Moiré heterostructures as a condensed-matter quantum simulator. Nature Physics, 2021, 17, 155-163.	16.7	317

#	Article	IF	CITATIONS
37	Programmable hyperbolic polaritons in van der Waals semiconductors. Science, 2021, 371, 617-620.	12.6	58
38	Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>MoSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2 Heterobilayers. Physical Review Letters, 2021, 126, 106804.</mml:mn></mml:mrow></mml:msub></mml:math>	mm/]://mn><	/mml:mrow>
39	Tunable Exciton-Optomechanical Coupling in Suspended Monolayer MoSe ₂ . Nano Letters, 2021, 21, 2538-2543.	9.1	25
40	Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Science Advances, 2021, 7, .	10.3	73
41	Stripe phases in WSe2/WS2 moiré superlattices. Nature Materials, 2021, 20, 940-944.	27.5	137
42	Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nature Communications, 2021, 12, 1641.	12.8	34
43	Enhanced Superconductivity in Monolayer <i>T</i> _d -MoTe ₂ . Nano Letters, 2021, 21, 2505-2511.	9.1	49
44	Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nature Communications, 2021, 12, 2269.	12.8	55
45	Stabilization of Chemical-Vapor-Deposition-Grown WS2 Monolayers at Elevated Temperature with Hexagonal Boron Nitride Encapsulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31271-31278.	8.0	4
46	Optically facet-resolved reaction anisotropy in two-dimensional transition metal dichalcogenides. 2D Materials, 2021, 8, 035045.	4.4	2
47	Low-Resistance p-Type Ohmic Contacts to Ultrathin WSe ₂ by Using a Monolayer Dopant. ACS Applied Electronic Materials, 2021, 3, 2941-2947.	4.3	14
48	Long-Lived Phonon Polaritons in Hyperbolic Materials. Nano Letters, 2021, 21, 5767-5773.	9.1	38
49	Chemical Dopantâ€Free Doping by Annealing and Electron Beam Irradiation on 2D Materials. Advanced Electronic Materials, 2021, 7, 2100449.	5.1	14
50	Analytical measurements of contact resistivity in two-dimensional WSe ₂ field-effect transistors. 2D Materials, 2021, 8, 045019.	4.4	9
51	Andreev Reflections in NbN/Graphene Junctions under Large Magnetic Fields. Nano Letters, 2021, 21, 8229-8235.	9.1	3
52	Enhancing Hydrogen Evolution Activity of Monolayer Molybdenum Disulfide via a Molecular Proton Mediator. ACS Catalysis, 2021, 11, 12159-12169.	11.2	19
53	Nanoscale lattice dynamics in hexagonal boron nitride moir \tilde{A} \otimes superlattices. Nature Communications, 2021, 12, 5741.	12.8	34
54	Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597, 345-349.	27.8	163

#	Article	IF	Citations
55	Moir \tilde{A} ©less correlations in ABCA graphene. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
56	Creation of moirel·bands in a monolayer semiconductor by spatially periodic dielectric screening. Nature Materials, 2021, 20, 645-649.	27.5	45
57	Nonmonotonic Temperature-Dependent Dissipation at Nonequilibrium in Atomically Thin Clean-Limit Superconductors. Nano Letters, 2021, 21, 583-589.	9.1	3
58	Damage-Free Atomic Layer Etch of WSe ₂ : A Platform for Fabricating Clean Two-Dimensional Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1930-1942.	8.0	24
59	Optical dispersion of valley-hybridised coherent excitons with momentum-dependent valley polarisation in monolayer semiconductor. 2D Materials, 2021, 8, 015009.	4.4	9
60	Electrical characterization of 2D materials-based field-effect transistors. 2D Materials, 2021, 8, 012002.	4.4	111
61	High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide. Nature Electronics, 2021, 4, 731-739.	26.0	41
62	Deep Learning Analysis of Polaritonic Wave Images. ACS Nano, 2021, 15, 18182-18191.	14.6	10
63	Electrical Modulation of Exciton Complexes in Light-Emitting Tunnel Transistors of a van der Waals Heterostructure. ACS Photonics, 2021, 8, 3455-3461.	6.6	3
64	Nonlinear nanoelectrodynamics of a Weyl metal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	15
65	Ultrafast Ferroelectric Ordering on the Surface of a Topological Semimetal MoTe ₂ . Nano Letters, 2021, 21, 9903-9908.	9.1	4
66	Manipulation of Exciton Dynamics in Single-Layer WSe ₂ Using a Toroidal Dielectric Metasurface. Nano Letters, 2021, 21, 9930-9938.	9.1	14
67	Miniaturizing Transmon Qubits Using van der Waals Materials. Nano Letters, 2021, 21, 10122-10126.	9.1	12
68	Nickel particle–enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. Science Advances, 2021, 7, eabk1892.	10.3	19
69	Electron-hole hybridization in bilayer graphene. National Science Review, 2020, 7, 248-253.	9.5	5
70	Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe ₂ . 2D Materials, 2020, 7, 015017.	4.4	45
71	Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors. ACS Nano, 2020, 14, 708-714.	14.6	41
72	Excitons in strain-induced one-dimensional moir \tilde{A} \otimes potentials at transition metal dichalcogenide heterojunctions. Nature Materials, 2020, 19, 1068-1073.	27.5	169

#	Article	IF	Citations
73	Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nature Nanotechnology, 2020, 15, 854-860.	31.5	134
74	Femtosecond exciton dynamics in WSe2 optical waveguides. Nature Communications, 2020, 11, 3567.	12.8	31
75	High-resolution optical micro-spectroscopy extending from the near-infrared to the vacuum-ultraviolet. Review of Scientific Instruments, 2020, 91, 073107.	1.3	1
76	Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl ₃ Interfaces. Nano Letters, 2020, 20, 8438-8445.	9.1	53
77	Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587, 214-218.	27.8	315
78	Directional ultrafast charge transfer in a WSe ₂ /MoSe ₂ heterostructure selectively probed by time-resolved SHG imaging microscopy. Nanoscale Horizons, 2020, 5, 1603-1609.	8.0	14
79	LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. Journal of the American Society of Nephrology: JASN, 2020, 31, 2372-2391.	6.1	22
80	Cell shape regulates subcellular organelle location to control early Ca2+ signal dynamics in vascular smooth muscle cells. Scientific Reports, 2020, 10, 17866.	3.3	18
81	Pressure Induced Topological Quantum Phase Transition in Weyl Semimetal Td-MoTe2. Journal of the Physical Society of Japan, 2020, 89, 094707.	1.6	4
82	Multioperationâ€Mode Lightâ€Emitting Fieldâ€Effect Transistors Based on van der Waals Heterostructure. Advanced Materials, 2020, 32, e2003567.	21.0	12
83	Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Materials, 2020, 7, 035031.	4.4	32
84	Direct Measurement of the Radiative Pattern of Bright and Dark Excitons and Exciton Complexes in Encapsulated Tungsten Diselenide. Scientific Reports, 2020, 10, 8091.	3.3	14
85	Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Materials, 2020, 19, 861-866.	27.5	544
86	Visualization of moiré superlattices. Nature Nanotechnology, 2020, 15, 580-584.	31.5	187
87	Exciton Dipole Orientation of Strain-Induced Quantum Emitters in WSe ₂ . Nano Letters, 2020, 20, 5119-5126.	9.1	24
88	Electrically focus-tuneable ultrathin lens for high-resolution square subpixels. Light: Science and Applications, 2020, 9, 98.	16.6	29
89	Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nature Nanotechnology, 2020, 15, 569-573.	31.5	48
90	Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367, 903-906.	12.6	262

#	Article	IF	Citations
91	Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14, 256-262.	31.4	140
92	Near-Unity Light Absorption in a Monolayer WS ₂ Van der Waals Heterostructure Cavity. Nano Letters, 2020, 20, 3545-3552.	9.1	48
93	Second-harmonic imaging microscopy for time-resolved investigations of transition metal dichalcogenides. Journal of Physics Condensed Matter, 2020, 32, 485901.	1.8	3
94	Phonon-Polariton-Enhanced Nonlinearity in Hexagonal Boron Nitride., 2020,,.		1
95	Tuning the ellipticity of harmonics generated in graphene. , 2020, , .		0
96	Platform for ultra-strong modulation in hybrid silicon nitride/2D material photonic structures. , 2020, , .		1
97	Engineering Atomic Defects in Hexagonal Boron Nitride via Resonant Optical Excitation of Phonons. , 2020, , .		0
98	Integrated Graphene Electro-Optic Modulator on Si3N4 with Increasing Bandwidth at Cryogenic Temperatures., 2020,,.		0
99	Extremely Efficient Light-Exciton Interaction in a Monolayer WS2 van der Waals Heterostructure Cavity. , 2020, , .		0
100	High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics, 2020, 10, 99-104.	6.0	26
101	Strong Metasurface–Josephson Plasma Resonance Coupling in Superconducting La 2Ⱂ x Sr x CuO 4. Advanced Optical Materials, 2019, 7, 1900712.	7. 3	9
102	Fragility of the dissipationless state in clean two-dimensional superconductors. Nature Physics, 2019, 15, 947-953.	16.7	29
103	Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 2019, 572, 95-100.	27.8	644
104	High-performance monolayer MoS2 field-effect transistor with large-scale nitrogen-doped graphene electrodes for Ohmic contact. Applied Physics Letters, 2019, 115, .	3.3	27
105	Direct Optical Evidence of Free Excitons in a Monolayer Quantum Material and Effective-Mass Measurements. , 2019, , .		0
106	Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43480-43487.	8.0	44
107	The device level modulation of carrier transport in a 2D WSe ₂ field effect transistor <i>via</i>) a plasma treatment. Nanoscale, 2019, 11, 17368-17375.	5.6	29
108	Optical generation of high carrier densities in 2D semiconductor heterobilayers. Science Advances, 2019, 5, eaax0145.	10.3	80

#	Article	IF	Citations
109	The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS ₂ . Nano Letters, 2019, 19, 8118-8124.	9.1	33
110	Bandwidth Limitation of Directly Contacted Graphene–Silicon Optoelectronics. ACS Applied Electronic Materials, 2019, 1, 172-178.	4.3	7
111	Hybrid Metasurface-Based Mid-Infrared Biosensor for Simultaneous Quantification and Identification of Monolayer Protein. ACS Photonics, 2019, 6, 501-509.	6.6	47
112	Pairing states of composite fermions in double-layer graphene. Nature Physics, 2019, 15, 898-903.	16.7	54
113	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. Nano Letters, 2019, 19, 4371-4379.	9.1	161
114	Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature, 2019, 571, 85-89.	27.8	126
115	Disorder in van der Waals heterostructures of 2D materials. Nature Materials, 2019, 18, 541-549.	27.5	390
116	A Fermiâ€Levelâ€Pinningâ€Free 1D Electrical Contact at the Intrinsic 2D MoS ₂ –Metal Junction. Advanced Materials, 2019, 31, e1808231.	21.0	108
117	Transferred via contacts as a platform for ideal two-dimensional transistors. Nature Electronics, 2019, 2, 187-194.	26.0	172
118	High-Quality Electrostatically Defined Hall Bars in Monolayer Graphene. Nano Letters, 2019, 19, 2583-2587.	9.1	16
119	Graphene transistor based on tunable Dirac fermion optics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6575-6579.	7.1	34
120	Sensitivity of the superconducting state in thin films. Science Advances, 2019, 5, eaau3826.	10.3	54
121	Large and reversible myosin-dependent forces in rigidity sensing. Nature Physics, 2019, 15, 689-695.	16.7	31
122	Single photon emission in WSe ₂ up 160 K by quantum yield control. 2D Materials, 2019, 6, 035017.	4.4	53
123	High-Quality Magnetotransport in Graphene Using the Edge-Free Corbino Geometry. Physical Review Letters, 2019, 122, 137701.	7.8	62
124	Atomic Layer Etching (ALE) of WSe2 Yielding High Mobility p-FETs., 2019,,.		0
125	Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nature Nanotechnology, 2019, 14, 1029-1034.	31.5	114
126	Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature, 2019, 574, 76-80.	27.8	331

#	Article	IF	Citations
127	An ultrafast symmetry switch in a Weyl semimetal. Nature, 2019, 565, 61-66.	27.8	307
128	Competing Fractional Quantum Hall and Electron Solid Phases in Graphene. Physical Review Letters, 2019, 122, 026802.	7.8	28
129	Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nature Communications, 2019, 10, 109.	12.8	79
130	Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2019, 2, 17-25.	26.0	113
131	Ambipolar Memristive Phenomenon in Largeâ€Scale, Fewâ€Layered αMoO ₃ Recrystallized Films. Advanced Materials Interfaces, 2019, 6, 1801591.	3.7	7
132	Composite photonic platform based on 2D semiconductor monolayers., 2019,,.		2
133	Nonlinear Interaction of Rydberg Exciton-Polaritons in Two-Dimensional WSe2., 2019, , .		2
134	Shedding light on exciton's nature in monolayer quantum material by optical dispersion measurements. Optics Express, 2019, 27, 37131.	3.4	14
135	No Tilt Angle Dependence of Grain Boundary on Mechanical Strength of Chemically Deposited Graphene Film. Journal of the Korean Ceramic Society, 2019, 56, 506-512.	2.3	1
136	THz-Pump UED-Probe on a Topological Weyl Semimetal. , 2019, , .		0
137	Near ultraviolet light emission in hexagonal boron nitride based van der Waals heterostructures. , 2019, , .		1
138	Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions. Developmental Cell, 2018, 44, 326-336.e3.	7.0	101
139	Via Method for Lithography Free Contact and Preservation of 2D Materials. Nano Letters, 2018, 18, 1416-1420.	9.1	59
140	Ultrafast Graphene Light Emitters. Nano Letters, 2018, 18, 934-940.	9.1	109
141	The Impact of the Substrate Material on the Optical Properties of 2D WSe2 Monolayers. Semiconductors, 2018, 52, 565-571.	0.5	14
142	Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nature Materials, 2018, 17, 411-415.	27.5	60
143	Mechanisms and criteria for failure in polycrystalline graphene. International Journal of Solids and Structures, 2018, 143, 232-244.	2.7	4
144	The influence of the environment on monolayer tungsten diselenide photoluminescence. Nano Structures Nano Objects, 2018, 15, 84-97.	3.5	21

#	Article	IF	Citations
145	Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode. Npj 2D Materials and Applications, 2018, 2, .	7.9	31
146	Magnetism in semiconducting molybdenum dichalcogenides. Science Advances, 2018, 4, eaat3672.	10.3	92
147	Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light: Science and Applications, 2018, 7, 67.	16.6	98
148	Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nature Nanotechnology, 2018, 13, 1137-1142.	31.5	198
149	Phase transition and electronic structure evolution of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoTe</mml:mi><mml:mn>2<th>l:n3n2 <th>ml9msub></th></th></mml:mn></mml:msub></mml:math>	l:n3n2 <th>ml9msub></th>	ml 9 msub>
150	Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers. Nature Communications, 2018, 9, 3718.	12.8	133
151	Monolayer Molybdenum Disulfide Transistors with Single-Atom-Thick Gates. Nano Letters, 2018, 18, 3807-3813.	9.1	88
152	Fundamental limits to graphene plasmonics. Nature, 2018, 557, 530-533.	27.8	401
153	Oxygen-Promoted Chemical Vapor Deposition of Graphene on Copper: A Combined Modeling and Experimental Study. ACS Nano, 2018, 12, 9372-9380.	14.6	30
154	Impact ionization by hot carriers in a black phosphorus field effect transistor. Nature Communications, 2018, 9, 3414.	12.8	41
155	Twistable electronics with dynamically rotatable heterostructures. Science, 2018, 361, 690-693.	12.6	387
156	Dielectric Dispersion and High Field Response of Multilayer Hexagonal Boron Nitride. Advanced Functional Materials, 2018, 28, 1804235.	14.9	38
157	Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nature Nanotechnology, 2018, 13, 797-801.	31.5	66
158	Layer dependence of third-harmonic generation in thick multilayer graphene. Physical Review Materials, 2018, 2, .	2.4	6
159	Small-signal model for heterogeneous integrated graphene-silicon photonics. , 2018, , .		2
160	Giant electro-refractive modulation of monolayer WS2 embedded in photonic structures., 2018,,.		3
161	The influence of hBN on the pump-dependent time-evolution of monolayer photoluminescence in WSe2. , 2018, , .		0
162	Single-molecule Thermometry by Carbon Nanotube Excitons Coupled to Plasmonic Nanocavities. , 2018, , .		0

#	Article	IF	CITATIONS
163	Exciton Dynamics in WSe2 Monolayers for Different Stacking Schemes Involving h-BN., 2018,,.		О
164	Density-dependent excitonic properties and dynamics in 2D heterostructures consisting of boron nitride and monolayer or few-layer tungsten diselenide. , 2018, , .		0
165	Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride. Carbon, 2017, 114, 579-584.	10.3	12
166	Direct observation of grain boundaries in chemical vapor deposited graphene. Carbon, 2017, 115, 147-153.	10.3	22
167	Engineering the Structural and Electronic Phases of MoTe ₂ through W Substitution. Nano Letters, 2017, 17, 1616-1622.	9.1	128
168	Grapheneâ€Assisted Antioxidation of Tungsten Disulfide Monolayers: Substrate and Electricâ€Field Effect. Advanced Materials, 2017, 29, 1603898.	21.0	47
169	Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Materials, 2017, 4, 021019.	4.4	76
170	Real-time monitoring of insulin using a graphene aptameric nanosensor. , 2017, , .		0
171	A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Scientific Reports, 2017, 7, 43934.	3.3	32
172	Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Materials, 2017, 4, 025045.	4.4	80
173	Thickness-dependent Schottky barrier height of MoS ₂ field-effect transistors. Nanoscale, 2017, 9, 6151-6157.	5.6	120
174	Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Materials, 2017, 4, 031011.	4.4	242
175	A large-scale NEMS light-emitting array based on CVD graphene (Conference Presentation). , 2017, , .		1
176	Universality of periodicity as revealed from interlayer-mediated cracks. Scientific Reports, 2017, 7, 43400.	3.3	8
177	Interfacial Charge Transfer Circumventing Momentum Mismatch at Two-Dimensional van der Waals Heterojunctions. Nano Letters, 2017, 17, 3591-3598.	9.1	172
178	EGFR and HER2 activate rigidity sensing only on rigid matrices. Nature Materials, 2017, 16, 775-781.	27.5	68
179	Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nature Communications, 2017, 8, 15251.	12.8	526
180	Tungsten Disulfide Monolayers: Grapheneâ€Assisted Antioxidation of Tungsten Disulfide Monolayers: Substrate and Electricâ€Field Effect (Adv. Mater. 18/2017). Advanced Materials, 2017, 29, .	21.0	0

#	Article	IF	Citations
181	Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation). , 2017, , .		O
182	Electrostatic Screening of Charged Defects in Monolayer MoS ₂ . Journal of Physical Chemistry Letters, 2017, 8, 2148-2152.	4.6	40
183	Epitaxially Selfâ€Assembled Alkane Layers for Graphene Electronics. Advanced Materials, 2017, 29, 1603925.	21.0	24
184	Tuning quantum nonlocal effects in graphene plasmonics. Science, 2017, 357, 187-191.	12.6	251
185	Excitonic superfluid phase in double bilayerÂgraphene. Nature Physics, 2017, 13, 751-755.	16.7	173
186	Screen printing of 2D semiconductors. Nature, 2017, 544, 167-168.	27.8	73
187	High Electric Field Carrier Transport and Power Dissipation in Multilayer Black Phosphorus Field Effect Transistor with Dielectric Engineering. Advanced Functional Materials, 2017, 27, 1604025.	14.9	47
188	Electrically Driven Reversible Phase Changes in Layered In ₂ Se ₃ Crystalline Film. Advanced Materials, 2017, 29, 1703568.	21.0	77
189	Even-denominator fractional quantum Hall states in bilayer graphene. Science, 2017, 358, 648-652.	12.6	90
190	Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips. Nano Letters, 2017, 17, 6526-6533.	9.1	84
191	Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene. Nature Communications, 2017, 8, 948.	12.8	71
192	Trion-Species-Resolved Quantum Beats in MoSe ₂ . ACS Nano, 2017, 11, 11550-11558.	14.6	33
193	Force-Induced Calpain Cleavage of Talin Is Critical for Growth, Adhesion Development, and Rigidity Sensing. Nano Letters, 2017, 17, 7242-7251.	9.1	44
194	Tunable mid-infrared biosensors based on graphene metasurfaces. , 2017, , .		0
195	Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures. Physical Review Letters, 2017, 119, 056802.	7.8	20
196	Real-Time Monitoring of Insulin Using a Graphene Field-Effect Transistor Aptameric Nanosensor. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27504-27511.	8.0	102
197	Modulation of Quantum Tunneling <i>via</i> a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p–n Junction. ACS Nano, 2017, 11, 9143-9150.	14.6	164
198	Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. Npj 2D Materials and Applications, 2017, 1, .	7.9	25

#	Article	IF	CITATIONS
199	Tunable excitons in bilayer graphene. Science, 2017, 358, 907-910.	12.6	126
200	Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nature Communications, 2017, 8, 1413.	12.8	87
201	Magnetic brightening and control of dark excitons in monolayer WSe2. Nature Nanotechnology, 2017, 12, 883-888.	31.5	315
202	Electrical 2Ï€ phase control of infrared light in a 350-nm footprint using graphene plasmons. Nature Photonics, 2017, 11, 421-424.	31.4	63
203	Low-Temperature Ohmic Contact to Monolayer MoS ₂ by van der Waals Bonded Co/ <i>h</i> h-BN Electrodes. Nano Letters, 2017, 17, 4781-4786.	9.1	233
204	Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nature Nanotechnology, 2017, 12, 31-35.	31.5	257
205	Thermoelectric detection and imaging of propagating grapheneÂplasmons. Nature Materials, 2017, 16, 204-207.	27.5	141
206	Cell shape information is transduced through tension-independent mechanisms. Nature Communications, 2017, 8, 2145.	12.8	47
207	Carrierâ€Type Modulation and Mobility Improvement of Thin MoTe ₂ . Advanced Materials, 2017, 29, 1606433.	21.0	158
208	Active Metasurface Sensors for High Sensitivity Detection of the Concentration and Mid-Infrared Spectral Fingerprints of Biomolecules., 2017,,.		0
209	Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PLoS Computational Biology, 2017, 13, e1005433.	3.2	18
210	Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure. Physical Review Materials, 2017, 1, .	2.4	13
211	The influence of the substrate material on the optical properties of tungsten diselendide monolayers. , 2017, , .		0
212	Improving the radiation hardness of graphene field effect transistors. Applied Physics Letters, 2016, 109, .	3.3	21
213	Effect of vacuum thermal annealing to encapsulated graphene field effect transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 041805.	1.2	7
214	Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers. Applied Physics Letters, 2016, 109, 122411.	3.3	41
215	Tunable Ultrafast Thermal Relaxation in Graphene Measured by Continuous-Wave Photomixing. Physical Review Letters, 2016, 117, 257401.	7.8	16
216	Electron optics with p-n junctions in ballistic graphene. Science, 2016, 353, 1522-1525.	12.6	253

#	Article	IF	Citations
217	Piezophototronic Effect in Singleâ€Atomicâ€Layer MoS ₂ for Strainâ€Gated Flexible Optoelectronics. Advanced Materials, 2016, 28, 8463-8468.	21.0	187
218	Limits of Carrier Diffusion in <i>n</i> -Type and <i>p</i> -Type CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 3510-3518.	4.6	86
219	Multiple hot-carrier collection in photo-excited graphene Moiré superlattices. Science Advances, 2016, 2, e1600002.	10.3	42
220	The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7, 11894.	12.8	446
221	Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nature Communications, 2016, 7, 10783.	12.8	80
222	Radiation hardened graphene field effect transistors. , 2016, , .		3
223	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
224	Gateâ€Tunable Hole and Electron Carrier Transport in Atomically Thin Dualâ€Channel WSe ₂ /MoS ₂ Heterostructure for Ambipolar Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 9519-9525.	21.0	70
225	Negative Coulomb Drag in Double Bilayer Graphene. Physical Review Letters, 2016, 117, 046802.	7.8	83
226	Scattering strength of potassium on a carbon nanotube with known chirality. Physical Review B, 2016, 94, .	3.2	2
227	Lightly Fluorinated Graphene as a Protective Layer for n-Type Si(111) Photoanodes in Aqueous Electrolytes. Nano Letters, 2016, 16, 4082-4086.	9.1	19
228	α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Molecular Biology of the Cell, 2016, 27, 3471-3479.	2.1	68
229	Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation. ACS Nano, 2016, 10, 1820-1828.	14.6	112
230	Direct Measurement of the Tunable Electronic Structure of Bilayer MoS ₂ by Interlayer Twist. Nano Letters, 2016, 16, 953-959.	9.1	113
231	Linearly Polarized Excitons in Single- and Few-Layer ReS ₂ Crystals. ACS Photonics, 2016, 3, 96-101.	6.6	216
232	Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on softÂmatrices. Nature Cell Biology, 2016, 18, 33-42.	10.3	168
233	Modulation of mechanical resonance by chemical potential oscillation in graphene. Nature Physics, 2016, 12, 240-244.	16.7	47
234	Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Physics, 2016, 12, 208-212.	16.7	228

#	Article	IF	CITATIONS
235	Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2. Nature Physics, 2016, 12, 328-332.	16.7	159
236	High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography. Nano Letters, 2016, 16, 2198-2204.	9.1	42
237	Strong interfacial exchange field in the graphene/EuS heterostructure. Nature Materials, 2016, 15, 711-716.	27.5	292
238	Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nature Photonics, 2016, 10, 244-247.	31.4	312
239	A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules. Nanoscale, 2016, 8, 5815-5819.	5.6	53
240	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nature Nanotechnology, 2016, 11, 426-431.	31.5	287
241	Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. ACS Nano, 2016, 10, 2975-2981.	14.6	39
242	Energy Transfer from Quantum Dots to Graphene and MoS ₂ : The Role of Absorption and Screening in Two-Dimensional Materials. Nano Letters, 2016, 16, 2328-2333.	9.1	179
243	Photonic and plasmonic guided modes in graphene-silicon photonic crystals. , 2016, , .		O
244	Layer-Dependent Third-Harmonic Generation in Multilayer Graphene., 2016,,.		0
245	Cavity-Enhanced Narrowband Radiation of an Electrically Driven Graphene Light Emitter., 2016,,.		0
246	Flexible 2D FETs using hBN dielectrics., 2015,,.		7
247	Tuning the electronic structure of monolayer graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> van der Waals heterostructures via interlayer twist. Physical Review B. 2015, 92	ni 3.2	56
248	Tunable electronic correlation effects in nanotube-light interactions. Physical Review B, 2015, 92, .	3.2	13
249	Electrical Tuning of Exciton Binding Energies in Monolayer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>WS</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>l:mn>2<td>nml:mn></td></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	l:mn>2 <td>nml:mn></td>	nml:mn>
250	Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers. Applied Physics Letters, 2015, 107, .	3.3	18
251	High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity. Nano Letters, 2015, 15, 2001-2005.	9.1	142
252	Slippery when dry. Science, 2015, 348, 1087-1088.	12.6	14

#	Article	IF	Citations
253	A solid-gated graphene fet sensor for PH measurements. , 2015, , .		4
254	Graphene opto-electronics and plasmonics for infrared frequencies. , 2015, , .		0
255	Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science, 2015, 350, 1231-1234.	12.6	155
256	Chemical Vapor Deposition Growth of Graphene and Related Materials. Journal of the Physical Society of Japan, 2015, 84, 121013.	1.6	24
257	A molybdenum disulfide piezoelectric strain gauge. , 2015, , .		0
258	Photocurrent gain in graphene-silicon p-i-n junction. , 2015, , .		0
259	Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85, 397-405.	10.3	41
260	Noise Modeling of Graphene Resonant Channel Transistors. IEEE Transactions on Electron Devices, 2015, 62, 1276-1283.	3.0	3
261	Clean Graphene Electrodes on Organic Thin-Film Devices via Orthogonal Fluorinated Chemistry. Nano Letters, 2015, 15, 2555-2561.	9.1	14
262	Observation of Ground- and Excited-State Charge Transfer at the C ₆₀ /Graphene Interface. ACS Nano, 2015, 9, 7175-7185.	14.6	69
263	Bright visible light emission from graphene. Nature Nanotechnology, 2015, 10, 676-681.	31.5	284
264	Highly Stable, Dual-Gated MoS ₂ Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano, 2015, 9, 7019-7026.	14.6	331
265	Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotechnology, 2015, 10, 534-540.	31.5	1,099
266	An aptameric graphene nanosensor for label-free detection of small-molecule biomarkers. Biosensors and Bioelectronics, 2015, 71, 222-229.	10.1	53
267	Encapsulated graphene field-effect transistors for air stable operation. Applied Physics Letters, 2015, 106, .	3.3	35
268	A graphene accelerometer., 2015,,.		13
269	Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics. IEEE Journal of the Electron Devices Society, 2015, 3, 44-48.	2.1	69
270	Ultraclean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Letters, 2015, 15, 3236-3240.	9.1	101

#	Article	IF	CITATIONS
271	A Low-Power Edge Detection Image Sensor Based on Parallel Digital Pulse Computation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 1043-1047.	3.0	17
272	Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS ₂ and MoSe ₂ Using Refined Optothermal Raman Technique. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25923-25929.	8.0	275
273	A solid dielectric gated graphene nanosensor in electrolyte solutions. Applied Physics Letters, 2015, 106, 123503.	3.3	27
274	Third-order intermodulation distortion in graphene resonant channel transistors. Applied Physics Letters, 2015, 106, 073504.	3.3	5
275	Photonic and Plasmonic Guided Modes in Graphene–Silicon Photonic Crystals. ACS Photonics, 2015, 2, 1552-1558.	6.6	23
276	In-Plane Anisotropy in Mono- and Few-Layer ReS ₂ Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. Nano Letters, 2015, 15, 5667-5672.	9.1	406
277	Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride. ACS Nano, 2015, 9, 8953-8959.	14.6	112
278	Ultrafast Graphene Photodetector for On-chip Broadband Auto-correlator., 2015,,.		0
279	High-Responsivity Graphene–Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. Nano Letters, 2015, 15, 7288-7293.	9.1	185
280	Structure and control of charge density waves in two-dimensional 1T-TaS ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15054-15059.	7.1	205
281	Low-Voltage Organic Electronics Based on a Gate-Tunable Injection Barrier in Vertical graphene-organic Semiconductor Heterostructures. Nano Letters, 2015, 15, 69-74.	9.1	105
282	Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Materials, 2015, 14, 421-425.	27.5	847
283	Reducing contact resistance of macro-scale separable electrical contacts with single-layer graphene coatings. , 2014, , .		4
284	Four-wave mixing in slow-light graphene-silicon photonic crystal waveguides. , 2014, , .		2
285	Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5, 5678.	12.8	1,533
286	A graphene nanosensor for detection of small molecules., 2014,,. Measurement of the optical dielectric function of monolayer transition-metal		1
287	dichalcogenides: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<mml:mrow><mml:mi>Mo</mml:mi><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi< td=""><td>.mŋ>3.2</td><td>nl:msub>1,017</td></mml:mi<></mml:msub></mml:mrow></mml:mn></mml:msub></mml:math>	.mŋ>3 . 2	nl:msub>1,017
288	Valley Splitting and Polarization by the Zeeman Effect in Monolayer <mml:math :mrow>,<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mr< td=""><td></td><td>.<</td></mpl:mr<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></mml:math :mrow>		.<

#	Article	IF	CITATIONS
289	Elastically strained nanowires and atomic sheets. MRS Bulletin, 2014, 39, 157-162.	3.5	33
290	CD28 and CD3 have complementary roles in T-cell traction forces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2241-2246.	7.1	211
291	Coherent Four-Wave Mixing on Hybrid Graphene-Silicon Photonic Crystals. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 116-121.	2.9	11
292	Optical bistability and free carrier dynamics in graphene–silicon photonic crystal cavities. Optics Communications, 2014, 314, 23-27.	2.1	8
293	Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene. Applied Physics Letters, 2014, 104, 171101.	3.3	23
294	Edge Nonlinear Optics on a MoS ₂ Atomic Monolayer. Science, 2014, 344, 488-490.	12.6	631
295	Epitaxial Growth of Molecular Crystals on van der Waals Substrates for Highâ€Performance Organic Electronics. Advanced Materials, 2014, 26, 2812-2817.	21.0	120
296	Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications, 2014, 5, 3186.	12.8	560
297	Low-power organic electronics based on gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. , 2014, , .		2
298	Heterostructures based on inorganic and organic van der Waals systems. APL Materials, 2014, 2, .	5.1	57
299	Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides. Applied Physics Letters, 2014, 105, .	3.3	67
300	Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514, 470-474.	27.8	1,762
301	Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotechnology, 2014, 9, 676-681.	31.5	1,953
302	Physical Adsorption and Charge Transfer of Molecular Br ₂ on Graphene. ACS Nano, 2014, 8, 2943-2950.	14.6	58
303	Organic Field Effect Transistors Based on Graphene and Hexagonal Boron Nitride Heterostructures. Advanced Functional Materials, 2014, 24, 5157-5163.	14.9	64
304	Controlled Light–Matter Interaction in Graphene Electrooptic Devices Using Nanophotonic Cavities and Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 95-105.	2.9	20
305	Tailoring the Electronic Structure in Bilayer Molybdenum Disulfide via Interlayer Twist. Nano Letters, 2014, 14, 3869-3875.	9.1	278
306	Tunable fractional quantum Hall phases in bilayer graphene. Science, 2014, 345, 61-64.	12.6	137

#	Article	IF	Citations
307	Measurement of collective dynamical mass of Dirac fermions in graphene. Nature Nanotechnology, 2014, 9, 594-599.	31.5	53
308	FHOD1 at Early Integrin Adhesions Drives Cell Spreading. Biophysical Journal, 2014, 106, 163a.	0.5	0
309	Single- and bi-layer graphene grown on sapphire by molecular beam epitaxy. Solid State Communications, 2014, 189, 15-20.	1.9	13
310	Contractile Forces During ECM Rigidity Sensing are Regulated by Tropomyosin-1. Biophysical Journal, 2014, 106, 576a.	0.5	0
311	Visualizing Individual Carbon Nanotubes with Optical Microscopy. Journal of the American Chemical Society, 2014, 136, 8536-8539.	13.7	11
312	Probing substrate-dependent long-range surface structure of single-layer and multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> by low-energy electron microscopy and microprobe diffraction. Physical Review B, 2014, 89, .	3.2	16
313	Tuning Many-Body Interactions in Graphene: The Effects of Doping on Excitons and Carrier Lifetimes. Physical Review Letters, 2014, 112, .	7.8	74
314	Carbon Nanotubes: Thermal Properties. , 2014, , 744-751.		5
315	Optical Third-Harmonic Generation in Graphene. Physical Review X, 2013, 3, .	8.9	159
316	Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nature Communications, 2013, 4, 2152.	12.8	58
317	Graphene nanoelectromechanical systems. Proceedings of the IEEE, 2013, 101, 1766-1779.	21.3	119
318	Robustly Passivated, Gold Nanoaperture Arrays for Single-Molecule Fluorescence Microscopy. ACS Nano, 2013, 7, 8158-8166.	14.6	25
319	Direct Measurement of the Thickness-Dependent Electronic Band Structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS </mml:mi> <mml:mn>2 </mml:mn> </mml:msub> </mml:math> Using Angle-Resolved Photoemission Spectroscopy, Physical Review Letters, 2013, 111, 106801.	7.8	435
320	Graphene Metallization of High-Stress Silicon Nitride Resonators for Electrical Integration. Nano Letters, 2013, 13, 4275-4279.	9.1	19
321	Flexible and Transparent MoS ₂ Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 2013, 7, 7931-7936.	14.6	947
322	Slow Gold Adatom Diffusion on Graphene: Effect of Silicon Dioxide and Hexagonal Boron Nitride Substrates. Journal of Physical Chemistry B, 2013, 117, 4305-4312.	2.6	34
323	Photoelectrochemical Behavior of n-Type Si(111) Electrodes Coated With a Single Layer of Graphene. Journal of the American Chemical Society, 2013, 135, 17246-17249.	13.7	53
324	Measurement of mobility in dual-gated MoS2 transistors. Nature Nanotechnology, 2013, 8, 146-147.	31.5	443

#	Article	IF	CITATIONS
325	One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013, 342, 614-617.	12.6	2,236
326	The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013, 342, 720-723.	12.6	977
327	Graphene mechanical oscillators with tunable frequency. Nature Nanotechnology, 2013, 8, 923-927.	31.5	259
328	FHOD1 Is Needed for Directed Forces and Adhesion Maturation during Cell Spreading and Migration. Developmental Cell, 2013, 27, 545-559.	7.0	107
329	Electro-optical Modulation in Graphene Integrated Photonic Crystal Nanocavities., 2013,,.		0
330	Enhanced photodetection in graphene-integrated photonic crystal cavity. Applied Physics Letters, 2013, 103, .	3.3	68
331	Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7, 883-887.	31.4	971
332	Decoding Information in Cell Shape. Cell, 2013, 154, 1356-1369.	28.9	151
333	High-Contrast Electrooptic Modulation of a Photonic Crystal Nanocavity by Electrical Gating of Graphene. Nano Letters, 2013, 13, 691-696.	9.1	177
334	Tightly bound trions in monolayer MoS2. Nature Materials, 2013, 12, 207-211.	27.5	2,329
335	Graphene Field-Effect Transistors with Gigahertz-Frequency Power Gain on Flexible Substrates. Nano Letters, 2013, 13, 121-125.	9.1	117
336	Sarcomere-Like Units Contract Cell Edges. Biophysical Journal, 2013, 104, 477a-478a.	0.5	1
337	Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Physical Review B, 2013, 87, .	3.2	400
338	Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nature Physics, 2013, 9, 154-158.	16.7	138
339	Electrically integrated SU-8 clamped graphene drum resonators for strain engineering. Applied Physics Letters, 2013, 102, 153101.	3.3	67
340	Effect of surface morphology on friction of graphene on various substrates. Nanoscale, 2013, 5, 3063.	5.6	148
341	Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12, 554-561.	27.5	1,896
342	Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Communications, 2013, 4, 1624.	12.8	595

#	Article	IF	CITATIONS
343	Graphene Field-Effect Transistors Based on Boron–Nitride Dielectrics. Proceedings of the IEEE, 2013, 101, 1609-1619.	21.3	137
344	Controlled Formation of Carbon Nanotube Junctions via Linker-Induced Assembly in Aqueous Solution. Journal of the American Chemical Society, 2013, 135, 8440-8443.	13.7	29
345	High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries. Science, 2013, 340, 1073-1076.	12.6	753
346	Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4, 2114.	12.8	520
347	Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497, 598-602.	27.8	1,404
348	Fabrication of hundreds of field effect transistors on a single carbon nanotube for basic studies and molecular devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 06FI01.	1.2	13
349	Publisher's Note: Nonlinear elastic behavior of two-dimensional molybdenum disulfide [Phys. Rev. B b>87, 035423 (2013)]. Physical Review B, 2013, 87, .	3.2	22
350	Simultaneous electrical and optical readout of graphene-coated high Q silicon nitride resonators. Applied Physics Letters, 2013, 103 , .	3.3	18
351	Flexible graphene field-effect transistors for microwave electronics. , 2013, , .		2
352	A transconductive graphene pressure sensor. , 2013, , .		8
353	Stress-enhanced chemical vapor deposited graphene NEMS RF resonators. , 2013, , .		2
354	Controlling the spontaneous emission rate of monolayer MoS ₂ in a photonic crystal nanocavity. Applied Physics Letters, 2013, 103, 181119.	3.3	194
355	Lifetime measurements and blinking statistics of nonradiative energy transfer from single halide-terminated nanocrystals onto graphene., 2013,,.		0
356	Optical Third-Harmonic Microscopy of Graphene. , 2013, , .		0
357	Cells test substrate rigidity by local contractions on submicrometer pillars. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5328-5333.	7.1	227
358	3-D Quantitative Microanatomy of Rat Kidney Podocytes as Determined by Serial Block-Face Scanning Electron Microscopy. , 2012, , .		0
359	Strongly correlated electron behavior in carbon nanotubes. EPJ Web of Conferences, 2012, 23, 00019.	0.3	2
360	Regenerative oscillation and four-wave mixing in graphene optoelectronics. , 2012, , .		1

#	Article	IF	CITATIONS
361	Allâ€optical structure assignment of individual singleâ€walled carbon nanotubes from Rayleigh and Raman scattering measurements. Physica Status Solidi (B): Basic Research, 2012, 249, 2436-2441.	1.5	10
362	T-Cell Receptor Activation Initiates Multiple Modes of Actin Polymerization within the Immune Synapse. Biophysical Journal, 2012, 102, 349a.	0.5	0
363	Graphene based heterostructures. Solid State Communications, 2012, 152, 1275-1282.	1.9	184
364	Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene. Nano Letters, 2012, 12, 2751-2756.	9.1	365
365	The role of feature curvature in contact guidance. Acta Biomaterialia, 2012, 8, 2595-2601.	8.3	43
366	Strong Enhancement of Light–Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Letters, 2012, 12, 5626-5631.	9.1	248
367	Renormalization of the Graphene Dispersion Velocity Determined from Scanning Tunneling Spectroscopy. Physical Review Letters, 2012, 109, 116802.	7.8	86
368	Inspired by strain. Nature Photonics, 2012, 6, 804-806.	31.4	22
369	Electronic compressibility of layer-polarized bilayer graphene. Physical Review B, 2012, 85, .	3.2	121
370	Negligible Environmental Sensitivity of Graphene in a Hexagonal Boron Nitride/Graphene/h-BN Sandwich Structure. ACS Nano, 2012, 6, 9314-9319.	14.6	98
371	Excitonic signatures in the optical response of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 900-906.	1.5	9
372	Spin and valley quantum Hall ferromagnetism inÂgraphene. Nature Physics, 2012, 8, 550-556.	16.7	307
373	Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates. Nano Letters, 2012, 12, 2408-2413.	9.1	122
374	Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6, 554-559.	31.4	519
375	Quantum Dot Nanoarrays: Selfâ€Assembly With Singleâ€Particle Control and Resolution. Advanced Materials, 2012, 24, 2207-2211.	21.0	32
376	Graphene growth on h-BN by molecular beam epitaxy. Solid State Communications, 2012, 152, 975-978.	1.9	92
377	Selective Biomolecular Nanoarrays for Parallel Single-Molecule Investigations. Journal of the American Chemical Society, 2011, 133, 7656-7659.	13.7	37
378	Controlled Confinement of DNA at the Nanoscale: Nanofabrication and Surface Bio-Functionalization. Methods in Molecular Biology, 2011, 749, 169-185.	0.9	8

#	Article	IF	CITATIONS
379	High-frequency performance of graphene field effect transistors with saturating IV-characteristics. , 2011, , .		32
380	Multicomponent fractional quantum Hall effect inÂgraphene. Nature Physics, 2011, 7, 693-696.	16.7	405
381	Adjacent assembly of self-assembled monolayers for the construction of selective bio-platforms. Sensors and Actuators B: Chemical, 2011, 159, 75-81.	7.8	3
382	Low Bias Electron Scattering in Structure-Identified Single Wall Carbon Nanotubes: Role of Substrate Polar Phonons. Physical Review Letters, 2011, 107, 146601.	7.8	16
383	Inking Elastomeric Stamps with Microâ€Patterned, Single Layer Graphene to Create Highâ€Performance OFETs. Advanced Materials, 2011, 23, 3531-3535.	21.0	100
384	Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Applied Physics Letters, 2011, 99, .	3.3	425
385	New approach for measuring protrusive forces in cells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FA02.	1.2	3
386	Anomalous Lattice Vibrations of Single- and Few-Layer MoS ₂ . ACS Nano, 2010, 4, 2695-2700.	14.6	4,028
387	Atomically Thin <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> : A New Direct-Gap Semiconductor. Physical Review Letters, 2010, 105, 136805.	7.8	12,565
388	Substrate effect on thicknessâ€dependent friction on graphene. Physica Status Solidi (B): Basic Research, 2010, 247, 2909-2914.	1.5	206
389	Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO Journal, 2010, 29, 1055-1068.	7.8	102
390	Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5, 722-726.	31.5	5,794
391	Radio frequency electrical transduction of graphene mechanical resonators. Applied Physics Letters, 2010, 97, .	3.3	112
392	Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study. Physical Review B, 2010, 81, .	3.2	55
393	Infrared spectra of individual semiconducting single-walled carbon nanotubes: Testing the scaling of transition energies for large diameter nanotubes. Physical Review B, 2010, 82, .	3.2	9
394	Probing Strain-Induced Electronic Structure Change in Graphene by Raman Spectroscopy. Nano Letters, 2010, 10, 4074-4079.	9.1	357
395	Frictional Characteristics of Atomically Thin Sheets. Science, 2010, 328, 76-80.	12.6	1,504
396	Geometric Sensing in Cells - a Molecular Approach. Biophysical Journal, 2010, 98, 195a.	0.5	O

#	Article	IF	Citations
397	Cell spreading as a hydrodynamic process. Soft Matter, 2010, 6, 4788.	2.7	58
398	Cell spreading as a hydrodynamic process. Soft Matter, 2010, 6, 4788-4799.	2.7	30
399	Longitudinal Optical Phonons in Metallic and Semiconducting Carbon Nanotubes. Physical Review Letters, 2009, 102, 075501.	7.8	61
400	Mott Insulating State in Ultraclean Carbon Nanotubes. Science, 2009, 323, 106-110.	12.6	151
401	Plasma Membrane Area Increases with Spread Area by Exocytosis of a GPI-anchored Protein Compartment. Molecular Biology of the Cell, 2009, 20, 3261-3272.	2.1	106
402	Fabrication of nanoscale bioarrays for the study of cytoskeletal protein binding interactions using nanoimprint lithography. Journal of Vacuum Science & Technology B, 2009, 27, 61-65.	1.3	20
403	Gold-tipped elastomeric pillars for cellular mechanotransduction. Journal of Vacuum Science & Technology B, 2009, 27, 3088.	1.3	5
404	Coupling Strongly, Discretely. Science, 2009, 325, 1084-1085.	12.6	8
405	Dynamic Force Generation by Neural Stem Cells. Cellular and Molecular Bioengineering, 2009, 2, 464-474.	2.1	18
406	Elastic and frictional properties of graphene. Physica Status Solidi (B): Basic Research, 2009, 246, 2562-2567.	1.5	333
407	Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotechnology, 2009, 4, 861-867.	31.5	847
408	Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7304-7308.	7.1	584
409	Observation of Graphene Bubbles and Effective Mass Transport under Graphene Films. Nano Letters, 2009, 9, 332-337.	9.1	198
410	Molecular-Scale Quantum Dots from Carbon Nanotube Heterojunctions. Nano Letters, 2009, 9, 1544-1548.	9.1	31
411	NEMS applications of graphene. , 2009, , .		4
412	Electrothermal noise analysis in frequency tuning of nanoresonators. Solid-State Electronics, 2008, 52, 1388-1393.	1.4	8
413	Growth of serpentine carbon nanotubes on quartz substrates and their electrical properties. Nano Research, 2008, 1, 427-433.	10.4	28
414	Microwave transmission loss in multiâ€walled nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 261-265.	1.8	0

#	ARTICLE	IF	CITATIONS
415	G ^{â€"} and G ⁺ in the Raman spectrum of isolated nanotube: a study on resonance conditions and lineshape. Physica Status Solidi (B): Basic Research, 2008, 245, 2189-2192.	1.5	28
416	Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146, 351-355.	1.9	6,963
417	Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008, 321, 385-388.	12.6	17,513
418	Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 2008, 101, 096802.	7.8	1,044
419	Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotechnology, 2008, 3, 163-167.	31.5	308
420	Transparent and Catalytic Carbon Nanotube Films. Nano Letters, 2008, 8, 982-987.	9.1	344
421	Determination of the Young's Modulus of Structurally Defined Carbon Nanotubes. Nano Letters, 2008, 8, 4158-4161.	9.1	83
422	Non-Brownian Diffusion of Membrane Molecules in Nanopatterned Supported Lipid Bilayers. Nano Letters, 2008, 8, 425-430.	9.1	33
423	Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements. Journal of Vacuum Science & Technology B, 2008, 26, 2549-2553.	1.3	31
424	Fluorinated diamondlike carbon templates for high resolution nanoimprint lithography. Journal of Vacuum Science & Technology B, 2008, 26, 2394-2398.	1.3	18
425	Plasma fluorination of carbon-based materials for imprint and molding lithographic applications. Applied Physics Letters, 2008, 93, 153105.	3.3	21
426	Raman Spectroscopy of Graphene under Uniaxial Strain. , 2008, , .		0
427	Direct Measurement of Strain-Induced Changes in the Band Structure of Carbon Nanotubes. Physical Review Letters, 2008, 100, 136803.	7.8	70
428	Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology, 2007, 18, 255701.	2.6	40
429	Hybrid carbon nanotube-silicon complementary metal oxide semiconductor circuits. Journal of Vacuum Science & Technology B, 2007, 25, 2577.	1.3	8
430	Passive electrical properties of multi-walled carbon nanotubes up to 0.1 THz. New Journal of Physics, 2007, 9, 265-265.	2.9	26
431	Raman scattering from individual, isolated metallic carbon nanotubes. , 2007, , .		0
432	Optical Studies of Individual Single-Walled Carbon Nanotubes under Axial Strain. , 2007, , .		0

#	Article	IF	Citations
433	Electrothermal tuning and SNR of nanoelectromechanical resonators., 2007,,.		O
434	Growth of Carbon Nanotubes on Carbon Toray Paper for Bio-Fuel Cell Applications., 2007,, 69.		1
435	Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes. Physical Review Letters, 2007, 98, 186808.	7.8	285
436	Variable Electron-Phonon Coupling in Isolated Metallic Carbon Nanotubes Observed by Raman Scattering. Physical Review Letters, 2007, 99, 027402.	7.8	98
437	Multiphonon Raman Scattering from Individual Single-Walled Carbon Nanotubes. Physical Review Letters, 2007, 98, 047402.	7.8	22
438	Optical studies of individual single-walled carbon nanotubes under axial strain., 2007,,.		0
439	Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold. Modelling and Simulation in Materials Science and Engineering, 2007, 15, S181-S192.	2.0	34
440	Mediated Enzyme Electrodes with Combined Micro- and Nanoscale Supports. Electrochemical and Solid-State Letters, 2007, 10, B96.	2.2	65
441	Recovery of linear harmonic oscillation from nonlinear regime in nano-resonators. Electronics Letters, 2007, 43, 752.	1.0	1
442	Looking inside cell walls. Nature Nanotechnology, 2007, 2, 140-141.	31.5	8
443	Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scripta Materialia, 2007, 56, 437-440.	5.2	123
444	Electrothermal tuning of Al–SiC nanomechanical resonators. Nanotechnology, 2006, 17, 1506-1511.	2.6	96
445	Single-walled carbon nanotubes as shadow masks for nanogap fabrication. Applied Physics Letters, 2006, 88, 143124.	3.3	22
446	Interactions between Individual Carbon Nanotubes Studied by Rayleigh Scattering Spectroscopy. Physical Review Letters, 2006, 96, 167401.	7.8	117
447	Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 11103-11109.	2.6	83
448	Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules. Science, 2006, 311, 356-359.	12.6	438
449	Electrical transport measurements of nanotubes with known (n,m) indices. Physica Status Solidi (B): Basic Research, 2006, 243, 3359-3364.	1.5	12
450	1-â€,toâ€,2-nm-wide nanogaps fabricated with single-walled carbon nanotube shadow masks. Journal of Vacuum Science & Technology B, 2006, 24, 3213.	1.3	12

#	Article	IF	CITATIONS
451	Electrothermal frequency tuning of a nano-resonator. Electronics Letters, 2006, 42, 1484.	1.0	9
452	Utilization and Transport in Mediated Enzyme Electrodes with Multiscale Supports. ECS Transactions, 2006, 3, 1341-1350.	0.5	1
453	Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure. Science, 2006, 312, 554-556.	12.6	231
454	Observation of plastic deformation in freestanding single crystal Au nanowires. Applied Physics Letters, 2006, 89, 111916.	3.3	5
455	Simultaneous determination of structure and optical transitions of individual single-walled carbon nanotubes. , 2006, , .		0
456	Probing Interactions between Individual Carbon Nanotubes by Rayleigh Scattering Spectroscopy. , 2006, , .		0
457	Spectroscopy of the Electronic Transitions of Individual Carbon Nanotubes of Defined Crystal Structure. , 2006, , .		0
458	Probing the Mechanical Properties of Individual Single-Walled Carbon Nanotubes., 2006,,.		0
459	Controlled Placement of Individual Carbon Nanotubes. Nano Letters, 2005, 5, 1515-1518.	9.1	80
460	Fabrication and surface chemistry of nanoscale bioarrays designed for the study of cytoskeletal protein binding interactions and their effect on cell motility. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2972.	1.6	22
461	Nanomechanical hydrogen sensing. Applied Physics Letters, 2005, 86, 143104.	3.3	103
462	Growth of nanotubes and chemical sensor applications. , 2004, , .		2
463	Observation of Thermopower Oscillations in the Coulomb Blockade Regime in a Semiconducting Carbon Nanotube. Nano Letters, 2004, 4, 45-49.	9.1	61
464	Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering. Science, 2004, 306, 1540-1543.	12.6	228
465	Photoconductivity of Self-Assembled Porphyrin Nanorods. Nano Letters, 2004, 4, 1261-1265.	9.1	253
466	Simple Fabrication of Molecular Circuits by Shadow Mask Evaporation. Nano Letters, 2003, 3, 1371-1374.	9.1	55
467	Nanowire-based very-high-frequency electromechanical resonator. Applied Physics Letters, 2003, 83, 1240-1242.	3.3	307
468	Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Applied Physics Letters, 2003, 83, 3800-3802.	3.3	196

#	Article	IF	Citations
469	Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A: Materials Science and Processing, 2002, 74, 339-343.	2.3	445
470	Electrostatically-generated nanofibers of electronic polymers. Synthetic Metals, 2001, 119, 27-30.	3.9	503
471	Phonons and Thermal Properties of Carbon Nanotubes. , 2001, , 273-286.		133
472	Thermal conductivity of single wall carbon nanotubes: Diameter and annealing dependence. AIP Conference Proceedings, 2001, , .	0.4	13
473	Metal-Insulator and Structural Phase Transition Observed by ESR Spectroscopy and X-Ray Diffraction in KC60. Physical Review Letters, 2001, 86, 4346-4349.	7.8	13
474	Anisotropic electronic structure of orthorhombicRbC60:A high-field ESR investigation. Physical Review B, 2001, 63, .	3.2	4
475	Thermal Properties of Single-Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 1711.	0.1	4
476	Transport properties of a potassium-doped single-wall carbon nanotube rope. Physical Review B, 2000, 61, 4526-4529.	3.2	99
477	Electron Spin Density Distribution in the Polymer Phase of CsC60: Assignment of the NMR Spectrum. Physical Review Letters, 2000, 84, 717-720.	7.8	23
478	Chemical doping of individual semiconducting carbon-nanotube ropes. Physical Review B, 2000, 61, R10606-R10608.	3.2	159
479	Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science, 2000, 289, 1730-1733.	12.6	471
480	Is the Intrinsic Thermoelectric Power of Carbon Nanotubes Positive?. Physical Review Letters, 2000, 85, 4361-4364.	7.8	222
481	Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Applied Physics Letters, 2000, 77, 666-668.	3.3	775
482	Distinct polymer chain orientations in. , 1999, , .		0
483	Manipulation of the transport properties of single-walled nanotubes by alkali intercalation and local charge transfer. , 1999, , .		0
484	Is the ground state of., 1999,,.		2
485	Search for Superconductivity in Lithium. Journal of Low Temperature Physics, 1999, 114, 445-454.	1.4	19
486	Polymer chain orientations in KC60 and RbC60: structural analysis and relation with electronic properties. Synthetic Metals, 1999, 103, 2354-2357.	3.9	10

#	Article	lF	CITATIONS
487	Thermal conductivity of single-walled carbon nanotubes. Synthetic Metals, 1999, 103, 2498-2499.	3.9	189
488	Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999, 59, R2514-R2516.	3.2	1,042
489	Thermoelectric Power of Single-Walled Carbon Nanotubes. Physical Review Letters, 1998, 80, 1042-1045.	7.8	262
490	Evidence for Distinct Polymer Chain Orientations in KC60 and RbC60. Physical Review Letters, 1998, 81, 4420-4423.	7.8	59
491	Thermoelectric power and thermal conductivity of single-walled carbon nanotubes. , 1998, , .		O
492	Metal-insulator transition in AC60: RbC60 and KC60. Physical Review B, 1997, 56, 6627-6630.	3.2	18
493	Transport and structural properties of polymerized AC 60 (A = K, Rb) under zero and high pressure conditions. Applied Physics A: Materials Science and Processing, 1997, 64, 263-269.	2.3	8
494	Electron-beam analysis of polymerizedKC60. Physical Review B, 1996, 53, 8155-8156.	3.2	12
495	Electrical-transport measurements of KC60. Physical Review B, 1995, 52, R8700-R8702.	3.2	26
496	Evaluation of 3C-SiC Nanomechanical Resonators Using Room Temperature Magnetomotive Transduction. , 0, , .		3
497	Graphene Mechanical Properties. , 0, , 52-70.		0
498	Graphene–BN Heterostructures. , 0, , 219-237.		0
499	Chlorine-mediated atomic layer deposition of HfO2 on graphene. Journal of Materials Chemistry C, 0, ,	5 . 5	O