
Ae-Kyoung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6263266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical Modeling of Smartphones with WCDMA, LTE, and WLAN Bands for Epidemiological Studies. Journal of Electromagnetic Engineering and Science, 2022, 22, 41-47.	1.8	3
2	Estimation of RF and ELF dose by anatomical location in the brain from wireless phones in the MOBI-Kids study. Environment International, 2022, 163, 107189.	10.0	8
3	An International Collaborative Animal Study of the Carcinogenicity of Mobile Phone Radiofrequency Radiation: Considerations for Preparation of a Global Project. Bioelectromagnetics, 2022, 43, 218-224.	1.6	0
4	Quantification of Exposure Level in a Reverberation Chamber for a Large-Scale Animal Study. IEEE Journal of Microwaves, 2022, 2, 522-532.	6.5	2
5	A Rhesus Monkey Model and WBA SAR. , 2022, , .		0
6	Estimation of Power Density Radiated From Radio Base Station for Telecommunication Services. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 384-389.	2.2	0
7	Study on the Appropriate Measurement Spacing for EMF Installation Compliance Assessments of a 3.5 GHz 5G Base Station. IEEE Access, 2021, 9, 88167-88176.	4.2	1
8	Distances between Rats in Reverberation Chambers Used for Large-Scale Experiments. Journal of Electromagnetic Engineering and Science, 2021, 21, 148-152.	1.8	6
9	Posture-Transformed Monkey Phantoms Developed from a Visible Monkey. Applied Sciences (Switzerland), 2021, 11, 4430.	2.5	2
10	Mobile Phone Use and Time Trend of Brain Cancer Incidence Rate in Korea. Bioelectromagnetics, 2021, 42, 629-648.	1.6	3
11	EMF Levels in 5G New Radio Environment in Seoul, Korea. IEEE Access, 2021, 9, 19716-19722.	4.2	29
12	Field Uniformity Assessment of a Reverberation Chamber for a Large-Scale Animal Study. IEEE Access, 2021, 9, 146471-146477.	4.2	6
13	Review of Existing Research on the Effects of Human Exposure to RF EMF. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 857-871.	0.3	0
14	Effect of Exposure to a Radiofrequency Electromagnetic Field on Body Temperature in Anesthetized and Nonâ€Anesthetized Rats. Bioelectromagnetics, 2020, 41, 104-112.	1.6	7
15	Brain EM Exposure for Voice Calls of Mobile Phones in Wireless Communication Environment of Seoul, Korea. IEEE Access, 2020, 8, 163176-163185.	4.2	7
16	Dawn of the Visible Monkey: Segmentation of the Rhesus Monkey for 2D and 3D Applications. Journal of Korean Medical Science, 2020, 35, e100.	2.5	4
17	Implementation of an in vitro exposure system for 28 GHz. ETRI Journal, 2020, 42, 837-845.	2.0	3
18	Concern and Risk Communication about the Potential Health Risk of EMF in Korea. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2020, 31, 831-834.	0.3	0

AE-KYOUNG LEE

#	Article	IF	CITATIONS
19	Statistical Analysis of SAR for Pregnant Rats in a Reverberation Chamber. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2020, 31, 843-846.	0.3	0
20	Proposal of 28 GHz In Vitro Exposure System Based on Field Uniformity for Threeâ€Dimensional Cell Culture Experiments. Bioelectromagnetics, 2019, 40, 445-457.	1.6	4
21	Is the SAM phantom conservative for SAR evaluation of all phone designs?. ETRI Journal, 2019, 41, 337-347.	2.0	3
22	S VALUES FOR NEUROIMAGING PROCEDURES ON KOREAN PEDIATRIC AND ADULT HEAD COMPUTATIONAL PHANTOMS. Radiation Protection Dosimetry, 2019, 185, 168-175.	0.8	4
23	Brain SAR of average male Korean child to adult models for mobile phone exposure assessment. Physics in Medicine and Biology, 2019, 64, 045004.	3.0	19
24	Assessment of radiofrequency electromagnetic field exposure from personal measurements considering the body shadowing effect in Korean children and parents. Science of the Total Environment, 2018, 627, 1544-1551.	8.0	22
25	Averaged head phantoms from magnetic resonance images of Korean children and young adults. Physics in Medicine and Biology, 2018, 63, 035003.	3.0	11
26	VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry. Journal of Radiation Research, 2018, 59, 338-380.	1.6	13
27	ELF exposure from mobile and cordless phones for the epidemiological MOBI-Kids study. Environment International, 2017, 101, 59-69.	10.0	7
28	Mobile phone types and SAR characteristics of the human brain. Physics in Medicine and Biology, 2017, 62, 2741-2761.	3.0	23
29	Neurodevelopment for the first three years following prenatal mobile phone use, radio frequency radiation and lead exposure. Environmental Research, 2017, 156, 810-817.	7.5	22
30	Spatial electric field distribution near the base station antenna using ray tracing. , 2017, , .		0
31	KOREAN PEDIATRIC AND ADULT HEAD COMPUTATIONAL PHANTOMS AND APPLICATION TO PHOTON SPECIFIC ABSORBED FRACTIONS CALCULATIONS. Radiation Protection Dosimetry, 2017, 176, 294-301.	0.8	6
32	Specific absorption rates in human brain for different length of bar phones. , 2016, , .		0
33	Multiple assessment methods of prenatal exposure to radio frequency radiation from telecommunication in the Mothers and Children's Environmental Health (MOCEH) study. International Journal of Occupational Medicine and Environmental Health, 2016, 29, 959-972.	1.3	4
34	Numerical Implementation of Representative Mobile Phone Models for Epidemiological Studies. Journal of the Korean Institute of Electromagnetic Engineering and Science, 2016, 16, 87-99.	3.0	17
35	SAR Comparison of SAM Phantom and Anatomical Head Models for a Typical Bar-Type Phone Model. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1281-1284.	2.2	18
36	Children's Mobile Phone Use and Dosimetry. Journal of the Korean Institute of Electromagnetic Engineering and Science, 2015, 15, 167-172.	3.0	3

AE-KYOUNG LEE

#	Article	IF	CITATIONS
37	The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk. Frontiers in Public Health, 2014, 2, 124.	2.7	53
38	Assessment of extremely low frequency magnetic field exposure from GSM mobile phones. Bioelectromagnetics, 2014, 35, 210-221.	1.6	15
39	Mobi-Kids Study: Exposure Assessment of Electromagnetic Radiation from Mobile Phones -II. Evaluation Method of Head SAR and Cumulative Dose. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2013, 24, 1158-1166.	0.3	2
40	Determining the influence of Korean population variation on whole-body average SAR. Physics in Medicine and Biology, 2012, 57, 2709-2725.	3.0	17
41	A Comparison of Specific Absorption Rates in SAM Phantom and Child Head Models at 835 and 1900 MHz. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 619-627.	2.2	16
42	Development of 7-Year-Old Korean Child Model for Computational Dosimetry. ETRI Journal, 2009, 31, 237-239.	2.0	29
43	Internal Resistance of Voltage Source by Use of the Finite-Difference Time-Domain Technique. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 1194-1197.	4.0	0
44	Study on SARs in Head Models With Different Shapes by Age Using SAM Model for Mobile Phone Exposure at 835 MHz. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 302-312.	2.2	16
45	Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 397-407.	2.2	152
46	Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models. ETRI Journal, 2005, 27, 227-230.	2.0	9
47	The scaled SAM models and SAR for handset exposure at 835 MHz. , 2005, , .		0
48	Human Head Size and SAR Characteristics for Handset Exposure. ETRI Journal, 2002, 24, 176-180.	2.0	21
49	Study of the tissue volume for spatial-peak mass-averaged SAR evaluation. IEEE Transactions on Electromagnetic Compatibility, 2002, 44, 404-408.	2.2	15
50	An algorithm for an advanced GTEM to ground plane correlation of radiated emission test. , 0, , .		7
51	Effect of head size for mobile phone exposure on EM absorption. , 0, , .		1
52	Comparison of correlation algorithms between GTEM cell and semi anechoic chamber. , 0, , .		3