
## Maxim Volgushev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6262148/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mechanism of Pacemaker Activity in Zebrafish DC2/4 Dopaminergic Neurons. Journal of Neuroscience, 2021, 41, 4141-4157.                                                                        | 3.6 | 4         |
| 2  | Altered Heterosynaptic Plasticity Impairs Visual Discrimination Learning in Adenosine A1 Receptor<br>Knock-Out Mice. Journal of Neuroscience, 2021, 41, 4631-4640.                            | 3.6 | 11        |
| 3  | When cats need to see to step accurately?. Journal of Physiology, 2021, , .                                                                                                                   | 2.9 | 4         |
| 4  | Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic<br>Weight Changes?. Frontiers in Cellular Neuroscience, 2020, 14, 204.                       | 3.7 | 21        |
| 5  | Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual<br>Cortex. Journal of Neuroscience, 2019, 39, 6865-6878.                             | 3.6 | 16        |
| 6  | Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex.<br>European Journal of Neuroscience, 2017, 45, 1333-1342.                                  | 2.6 | 2         |
| 7  | Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating<br>Heterosynaptic Changes. Journal of Neuroscience, 2017, 37, 1439-1452.                                | 3.6 | 20        |
| 8  | Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons. Frontiers in Cellular Neuroscience, 2017, 11, 28.                       | 3.7 | 10        |
| 9  | Impaired Fear Extinction Due to a Deficit in Ca2+ Influx Through L-Type Voltage-Gated Ca2+ Channels in<br>Mice Deficient for Tenascin-C. Frontiers in Integrative Neuroscience, 2017, 11, 16. | 2.1 | 9         |
| 10 | Estimating short-term synaptic plasticity from pre- and postsynaptic spiking. PLoS Computational Biology, 2017, 13, e1005738.                                                                 | 3.2 | 34        |
| 11 | Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields.<br>Journal of Neurophysiology, 2016, 115, 1886-1904.                                    | 1.8 | 26        |
| 12 | Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning. Journal<br>of Neuroscience, 2016, 36, 8842-8855.                                                 | 3.6 | 26        |
| 13 | Cortical Specializations Underlying Fast Computations. Neuroscientist, 2016, 22, 145-164.                                                                                                     | 3.5 | 12        |
| 14 | Adenosine effects on inhibitory synaptic transmission and excitation–inhibition balance in the rat<br>neocortex. Journal of Physiology, 2015, 593, 825-841.                                   | 2.9 | 21        |
| 15 | Homeostatic role of heterosynaptic plasticity: models and experiments. Frontiers in Computational<br>Neuroscience, 2015, 9, 89.                                                               | 2.1 | 78        |
| 16 | ldentifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro<br>Experiments. PLoS Computational Biology, 2015, 11, e1004167.                               | 3.2 | 21        |
| 17 | Advantages and Limitations of the Use of Optogenetic Approach in Studying Fast-Scale Spike Encoding.<br>PLoS ONE, 2015, 10, e0122286.                                                         | 2.5 | 16        |
| 18 | Injection of Fully-Defined Signal Mixtures: A Novel High-Throughput Tool to Study Neuronal Encoding<br>and Computations. PLoS ONE, 2014, 9, e109928.                                          | 2.5 | 8         |

MAXIM VOLGUSHEV

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Heterosynaptic Plasticity. Neuroscientist, 2014, 20, 483-498.                                                                                                       | 3.5 | 125       |
| 20 | Modulation of synaptic transmission by adenosine in layer 2/3 of the rat visual cortex in vitro.<br>Neuroscience, 2014, 260, 171-184.                               | 2.3 | 22        |
| 21 | Energyâ€ <b>e</b> fficient encoding by shifting spikes in neocortical neurons. European Journal of<br>Neuroscience, 2013, 38, 3181-3188.                            | 2.6 | 10        |
| 22 | Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics. Journal of Neuroscience, 2013, 33,<br>15915-15929.                                                    | 3.6 | 69        |
| 23 | Fast Computations in Cortical Ensembles Require Rapid Initiation of Action Potentials. Journal of Neuroscience, 2013, 33, 2281-2292.                                | 3.6 | 69        |
| 24 | A Small Fraction of Strongly Cooperative Sodium Channels Boosts Neuronal Encoding of High Frequencies. PLoS ONE, 2012, 7, e37629.                                   | 2.5 | 34        |
| 25 | Heterosynaptic plasticity induced by intracellular tetanization in layer 2/3 pyramidal neurons in rat auditory cortex. Journal of Physiology, 2012, 590, 2253-2271. | 2.9 | 27        |
| 26 | Ultrafast Population Encoding by Cortical Neurons. Journal of Neuroscience, 2011, 31, 12171-12179.                                                                  | 3.6 | 87        |
| 27 | Long-range correlation of the membrane potential in neocortical neurons during slow oscillation.<br>Progress in Brain Research, 2011, 193, 181-199.                 | 1.4 | 35        |
| 28 | Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats. Journal of Neuroscience, 2011, 31, 14998-15008.                                       | 3.6 | 201       |
| 29 | Spike Correlations – What Can They Tell About Synchrony?. Frontiers in Neuroscience, 2011, 5, 68.                                                                   | 2.8 | 25        |
| 30 | Modulation of the amplitude of γ-band activity by stimulus phase enhances signal encoding. European<br>Journal of Neuroscience, 2011, 33, 1223-1239.                | 2.6 | 3         |
| 31 | Local action for global vision. Journal of Physiology, 2011, 589, 3419-3420.                                                                                        | 2.9 | 0         |
| 32 | Correlations and Synchrony in Threshold Neuron Models. Physical Review Letters, 2010, 104, 058102.                                                                  | 7.8 | 73        |
| 33 | Signatures of synchrony in pairwise count correlations. Frontiers in Computational Neuroscience, 2010, 4, 1.                                                        | 2.1 | 91        |
| 34 | Origin of Active States in Local Neocortical Networks during Slow Sleep Oscillation. Cerebral Cortex, 2010, 20, 2660-2674.                                          | 2.9 | 246       |
| 35 | The determinants of the onset dynamics of action potentials in a computational model. Neuroscience, 2010, 167, 1070-1090.                                           | 2.3 | 19        |
| 36 | Heterosynaptic plasticity in the neocortex. Experimental Brain Research, 2009, 199, 377-390.                                                                        | 1.5 | 46        |

MAXIM VOLGUSHEV

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons:<br>Quantification of the Difference. PLoS ONE, 2008, 3, e1962.                                       | 2.5  | 15        |
| 38 | Detection of Active and Silent States in Neocortical Neurons from the Field Potential Signal during Slow-Wave Sleep. Cerebral Cortex, 2007, 17, 400-414.                                          | 2.9  | 144       |
| 39 | Hodgkin and Huxley model — still standing? (Reply). Nature, 2007, 445, E2-E3.                                                                                                                     | 27.8 | 18        |
| 40 | Unique features of action potential initiation in cortical neurons. Nature, 2006, 440, 1060-1063.                                                                                                 | 27.8 | 321       |
| 41 | Precise Long-Range Synchronization of Activity and Silence in Neocortical Neurons during Slow-Wave<br>Sleep. Journal of Neuroscience, 2006, 26, 5665-5672.                                        | 3.6  | 283       |
| 42 | Adaptation at Synaptic Connections to Layer 2/3 Pyramidal Cells in Rat Visual Cortex. Journal of Neurophysiology, 2005, 94, 363-376.                                                              | 1.8  | 20        |
| 43 | Probability of Transmitter Release at Neocortical Synapses at Different Temperatures. Journal of Neurophysiology, 2004, 92, 212-220.                                                              | 1.8  | 94        |
| 44 | Response selectivity and Î <sup>3</sup> -frequency fluctuations of the membrane potential in visual cortical neurons. Neurocomputing, 2004, 58-60, 957-963.                                       | 5.9  | 3         |
| 45 | Dependence of calcium influx in neocortical cells on temporal structure of depolarization, number of spikes, and blockade of NMDA receptors. Journal of Neuroscience Research, 2004, 76, 481-487. | 2.9  | 10        |
| 46 | Nitric oxide synthase in rat visual cortex: an immunohistochemical study. Brain Research Protocols, 2004, 13, 57-67.                                                                              | 1.6  | 21        |
| 47 | γ-Frequency fluctuations of the membrane potential and response selectivity in visual cortical neurons. European Journal of Neuroscience, 2003, 17, 1768-1776.                                    | 2.6  | 40        |
| 48 | Independence of visuotopic representation and orientation map in the visual cortex of the cat.<br>European Journal of Neuroscience, 2003, 18, 957-968.                                            | 2.6  | 35        |
| 49 | A novel mechanism of response selectivity of neurons in cat visual cortex. Journal of Physiology, 2002, 540, 307-320.                                                                             | 2.9  | 31        |
| 50 | Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex.<br>European Journal of Neuroscience, 2000, 12, 257-263.                                        | 2.6  | 54        |
| 51 | Retrograde signalling with nitric oxide at neocortical synapses. European Journal of Neuroscience, 2000, 12, 4255-4267.                                                                           | 2.6  | 53        |
| 52 | Membrane properties and spike generation in rat visual cortical cells during reversible cooling.<br>Journal of Physiology, 2000, 522, 59-76.                                                      | 2.9  | 136       |
| 53 | Synaptic transmission in the neocortex during reversible cooling. Neuroscience, 2000, 98, 9-22.                                                                                                   | 2.3  | 96        |
| 54 | NMDA receptor blockade prevents LTD, but not LTP induction by intracellular tetanization.<br>NeuroReport, 1999, 10, 3869-3874.                                                                    | 1.2  | 6         |

4

MAXIM VOLGUSHEV

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience, 1998, 83, 15-25.                                    | 2.3 | 152       |
| 56 | Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends in Neurosciences, 1996, 19, 272-277.                                            | 8.6 | 134       |
| 57 | All-or-none Excitatory Postsynaptic Potentials in the Rat Visual Cortex. European Journal of Neuroscience, 1995, 7, 1751-1760.                                                 | 2.6 | 47        |
| 58 | Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Visual Neuroscience, 1995, 12, 621-628.                                                | 1.0 | 61        |
| 59 | Neurophysiological analysis of long-term potentiation in mammalian brain. Behavioural Brain<br>Research, 1995, 66, 45-52.                                                      | 2.2 | 47        |
| 60 | Induction of LTP and LTD in visual cortex neurones by intracellular tetanization. NeuroReport, 1994, 5, 2069-2072.                                                             | 1.2 | 29        |
| 61 | Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings <i>in vivo</i> . Visual Neuroscience, 1993, 10, 1151-1155. | 1.0 | 77        |