Michelle V Buchanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6261347/publications.pdf

Version: 2024-02-01

71 3,210 24 55 g-index

71 71 71 71 3712

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons. Scientific Reports, 2015, 5, 16039.	3.3	38
2	The Bio-SANS instrument at the High Flux Isotope Reactor of Oak Ridge National Laboratory. Journal of Applied Crystallography, 2014, 47, 1238-1246.	4.5	83
3	The 40â€m general purpose small-angle neutron scattering instrument at Oak Ridge National Laboratory. Journal of Applied Crystallography, 2012, 45, 990-998.	4.5	89
4	Materials in extreme environments. Physics Today, 2009, 62, 32-37.	0.3	29
5	A General System for Studying Proteinâ°'Protein Interactions in Gram-Negative Bacteria. Journal of Proteome Research, 2008, 7, 3319-3328.	3.7	24
6	Statistically Inferring Proteinâ^'Protein Associations with Affinity Isolation LCâ^'MS/MS Assays. Journal of Proteome Research, 2007, 6, 3788-3795.	3.7	11
7	Thoughts on Starting the Hydrogen Economy. Physics Today, 2005, 58, 15-15.	0.3	11
8	The Hydrogen Economy. Physics Today, 2004, 57, 39-44.	0.3	1,277
9	New high-flux small-angle neutron scattering instrumentation and the Center for Structural and Molecular Biology at Oak Ridge National Laboratory. Journal of Applied Crystallography, 2003, 36, 829-831.	4.5	14
10	Chemical Composition of Fingerprints for Gender Determination. Journal of Forensic Sciences, 2002, 47, 1-3.	1.6	92
11	Improving Spot Homogeneity by Using Polymer Substrates in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Oligonucleotides. Analytical Chemistry, 2001, 73, 2617-2624.	6.5	52
12	Determination of cocaine and heroin vapor pressures using commercial and illicit samples. Analyst, The, 2000, 125, 1393-1396.	3.5	20
13	Laser-enhanced negative ion mass spectroscopy for weakly electron-attaching species. International Journal of Mass Spectrometry, 1999, 193, 77-86.	1.5	2
14	Analysis for TNF- \hat{l}_{\pm} Using Solid-Phase Affinity Capture with Radiolabel and MALDI-MS Detection. Analytical Chemistry, 1999, 71, 4727-4733.	6.5	23
15	Imaging of Vapor Plumes Produced by Matrix Assisted Laser Desorption: A Plume Sharpening Effect. Physical Review Letters, 1999, 83, 444-447.	7.8	103
16	MALDI-TOF Analysis of Polymerase Chain Reaction Products from Methanotrophic Bacteria. Analytical Chemistry, 1998, 70, 2693-2698.	6.5	30
17	Cadiolides A and B, New Metabolites from an Ascidian of the Genus Botryllus. Journal of Organic Chemistry, 1998, 63, 4147-4150.	3.2	38
18	<title>Chemical characterization of fingerprints from adults and children</title> ., 1997,,.		25

#	Article	IF	CITATIONS
19	<title>Detection and analysis of polymerase chain reaction products by mass spectrometry < /title>. , 1997, 2985, 120.</td><td></td><td>1</td></tr><tr><td>20</td><td>Nitric Oxide Chemical Ionization Ion Trap Mass Spectrometry for the Determination of Automotive Exhaust Constituents. Analytical Chemistry, 1997, 69, 5121-5129.</td><td>6.5</td><td>15</td></tr><tr><td>21</td><td>Synthesis of Electrophore-labeled Oligonucleotides and Characterization by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Journal of Mass Spectrometry, 1996, 31, 661-668.</td><td>1.6</td><td>5</td></tr><tr><td>22</td><td>Detection of Bacterial DNA Polymerase Chain Reaction Products by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 377-382.</td><td>1.5</td><td>52</td></tr><tr><td>23</td><td>Analysis of Polymerase Chain Reaction-Amplified DNA Products by Mass Spectrometry Using Matrix-Assisted Laser Desorption and Electrospray: Current Status. Analytical Biochemistry, 1995, 230, 205-214.</td><td>2.4</td><td>67</td></tr><tr><td>24</td><td>Low level detection of chemical agent simulants in meat and milk by ion trap mass spectrometry. Journal of Hazardous Materials, 1995, 42, 49-59.</td><td>12.4</td><td>9</td></tr><tr><td>25</td><td>An electrostatic ion guide interface for combining electrospray with Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 1995, 9, 731-734.</td><td>1.5</td><td>11</td></tr><tr><td>26</td><td>Analysis of modified oligonucleotides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Analytical Chemistry, 1995, 67, 2924-2930.</td><td>6.5</td><td>55</td></tr><tr><td>27</td><td>Rapid Analysis of Animal Drug Residues by Microcolumn Solid-Phase Extraction and Thermal
Desorption–Ion TYap Mass Spectrometry. Journal of AOAC INTERNATIONAL, 1994, 77, 1428-1434.</td><td>1.5</td><td>4</td></tr><tr><td>28</td><td>Rapid Method for Isolating Targeted Organic Chemicals from Biological Matrices. Analytical Letters, 1994, 27, 351-362.</td><td>1.8</td><td>0</td></tr><tr><td>29</td><td>Movement of chemical warfare agent simulants through porous media. Journal of Hazardous Materials, 1994, 37, 303-325.</td><td>12.4</td><td>12</td></tr><tr><td>30</td><td>The Structural Characterization of Polycyclic Aromatic Hydrocarbon Dihydrodiol Epoxide DNA Adducts Using Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry. Analytical Chemistry, 1994, 66, 1274-1285.</td><td>6.5</td><td>32</td></tr><tr><td>31</td><td>Characterization of Modified Nucleic Acid Constituents by Matrix-Assisted Laser Desorption Mass Spectrometry. Polycyclic Aromatic Compounds, 1994, 6, 95-102.</td><td>2.6</td><td>4</td></tr><tr><td>32</td><td>Negative- and positive-ion chemical ionization mass spectra of aromatic amines: Surface-assisted reactions involving oxygen. Organic Mass Spectrometry, 1993, 28, 953-962.</td><td>1.3</td><td>3</td></tr><tr><td>33</td><td>Methyl guanine isomer distinction by hydrogen / deuterium exchange using a fourier transform mass spectrometer. Journal of the American Society for Mass Spectrometry, 1993, 4, 296-305.</td><td>2.8</td><td>24</td></tr><tr><td>34</td><td>Matrix-assisted laser desorption/ionization Fourier-transform mass spectrometry of oligodeoxyribonucleotides. Rapid Communications in Mass Spectrometry, 1993, 7, 828-836.</td><td>1.5</td><td>44</td></tr><tr><td>35</td><td>Fourier Transform Mass Spectrometry of High-Mass Biomolecules. Analytical Chemistry, 1993, 65, 245A-259A.</td><td>6.5</td><td>96</td></tr><tr><td>36</td><td>Rapid extraction and structural characterization of biomolecules in agarose gels by laser desorption Fourier transform mass spectrometry. Analytical Chemistry, 1993, 65, 1329-1335.</td><td>6.5</td><td>19</td></tr></tbody></table></title>		

3

#	Article	IF	Citations
37	Fourier transform mass spectrometry of high-mass biomolecules. Analytical Chemistry, 1993, 65, 245A-259A.	6.5	63
38	A Simple, Lensless Interface of an RF Glow Discharge Device to an FT-ICR (FTMS). Applied Spectroscopy, 1992, 46, 1327-1330.	2.2	24
39	Investigation of UV matrix-assisted laser desorption fourier transform mass spectrometry for peptides. Journal of the American Society for Mass Spectrometry, 1991, 2, 22-28.	2.8	54
40	Structural Characterization of Normal and Modified Oligonucleotides by Matrix-assisted Laser Desorption Fourier Transform Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 1991, 2, 402-412.	2.8	71
41	Matrix-assisted laser desorption fourier transform mass spectrometry for the structural examination of modified nucleic acid constituents. International Journal of Mass Spectrometry and Ion Processes, 1991, 111, 365-380.	1.8	45
42	Applications of mass spectrometry to DNA sequencing. Genetic Analysis, Techniques and Applications, 1991, 8, 223-229.	1.5	16
43	Characterization of photo-induced pyrimidine cyclobutane dimers by laser desorption fourier transform mass spectrometry. Biological Mass Spectrometry, 1990, 19, 55-62.	0.5	12
44	Analysis of Planar Chromatograms by Fast Atom Bombardment and Laser Desorption Mass Spectrometry. Journal of Liquid Chromatography and Related Technologies, 1990, 13, 2841-2869.	1.0	7
45	Biotesting of wastewater: A comparative study using the Salmonella and CHO assay systems. Environmental and Molecular Mutagenesis, 1989, 14, 254-263.	2.2	23
46	Negative ions generated by reactions with oxygen in the chemical ionization source. I. Characterization of gas-phase and wall-catalyzed reactions of fluorene, anthracene and fluoranthene. Organic Mass Spectrometry, 1989, 24, 94-104.	1.3	29
47	Negative ions generated by reactions with oxygen in the chemical ionization source. II. The use of wall-catalyzed oxidation reactions for differentiation of polycyclic aromatic hydrocarbons and their methyl derivatives. Organic Mass Spectrometry, 1989, 24, 705-717.	1.3	22
48	Differentiation of methyl substituted fluorenes, anthracenes and benz[a]anthracenes using surface-catalyzed oxidation reactions and negative ion chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 1988, 2, 184-188.	1.5	8
49	Differentiation of Polycyclic Aromatic Hydrocarbons Using a Multimode Ionization Gas Chromatographic Detector. Journal of Chromatographic Science, 1988, 26, 49-54.	1.4	4
50	Principles and Features of Fourier Transform Mass Spectrometry. ACS Symposium Series, 1987, , 1-20.	0.5	16
51	Polycyclic aromatic hydrocarbon dermal tumorigensâ~†Comparison of high-boiling petroleum crude oils and distillates and coal-derived liquids. Fuel, 1987, 66, 1046-1049.	6.4	1
52	Negative ion processes for the unambiguous identification of polycyclic aromatic compounds. Fuel, 1987, 66, 954-959.	6.4	2
53	Formation of $[M+14]$ anions from fluorene: Negative ion CI studies using GC/MS, MS/MS and FTMS. Biomedical & Environmental Mass Spectrometry, 1987, 14, 395-399.	1.6	17
54	Fourier Transform Mass Spectrometry Studies of Negative Ion Processes. ACS Symposium Series, 1987, , 175-191.	0.5	4

#	Article	lF	Citations
55	Multimode ionization cell for gas chromatographic detection. Review of Scientific Instruments, 1986, 57, 3075-3080.	1.3	4
56	Carbon-13 NMR spectra of anthraquinone-derived dyes. Magnetic Resonance in Chemistry, 1985, 23, 161-165.	1.9	6
57	Differentiation of polycyclic aromatic hydrocarbons using electron capture negative chemical ionization. Organic Mass Spectrometry, 1984, 19, 486-489.	1.3	52
58	The distribution of dermal tumorigens in coal liquids: Relationship of tumorigenicity and microbial mutagenicity. Journal of Applied Toxicology, 1984, 4, 117-123.	2.8	15
59	Mass spectral characterization of oxygen-containing aromatics with methanol chemical ionization. Analytical Chemistry, 1984, 56, 546-549.	6.5	25
60	Chemical characterization of the mutagenic neutral aromatic polar fractions of petroleum substitutes. Fuel, 1983, 62, 1177-1180.	6.4	5
61	Toxic and teratogenic effects of chemical class fractions of a coal-gasification electrostatic precipitator tar. Toxicology, 1983, 29, 87-99.	4.2	13
62	The preparative scale separation and the identification of constituents of anthraquinonep-derived dye mixtures. Analytica Chimica Acta, 1983, 155, 151-158.	5.4	0
63	Frog Embryo Teratogenesis Assay: Xenopus (FETAX) — A Short-Term Assay Applicable to Complex Environmental Mixtures. , 1983, , 393-405.		124
64	Mass spectral characterization of nitrogen-containing compounds with ammonia chemical ionization. Analytical Chemistry, 1982, 54, 570-574.	6.5	60
65	A naturally occurring pyrimidodiazepine in Drosophila: chemical and spectral properties and relationship to drosopterin. Biochemistry, 1982, 21, 5700-5706.	2.5	25
66	Embryotoxic and teratogenic effects of aqueous extracts of tar from a coal gasification electrostatic precipitator. Teratogenesis, Carcinogenesis, and Mutagenesis, 1982, 2, 1-11.	0.8	17
67	The preparative scale separation and the identification of constituents of anthraquinone-derived dye mixtures. Analytica Chimica Acta, 1982, 135, 111-119.	5.4	6
68	The preparative scale separation and the identification of constituents of anthraquinone-derived dye mixtures. Analytica Chimica Acta, 1982, 135, 121-128.	5.4	6
69	Low-temperature hydrogen transfer and cracking catalysis in molten SbCl3-AlCl3. Fuel, 1981, 60, 694-698.	6.4	6
70	Characterization of olefinic double bonds in linear unsaturated fatty acids using fluorine magnetic resonance spectrometry. Analytical Chemistry, 1980, 52, 253-254.	6.5	5
71	Positional and geometric characterization of olefinic double bonds by fluorine magnetic resonance spectrometry. Analytical Chemistry, 1977, 49, 2146-2149.	6. 5	9