Vanessa O Ezenwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6261218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do predators keep prey healthy or make them sicker? A metaâ€analysis. Ecology Letters, 2022, 25, 278-294.	6.4	4
2	Sublethal effects of parasitism on ruminants can have cascading consequences for ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117381119.	7.1	7
3	Large herbivore loss has complex effects on mosquito ecology and vectorâ€borne disease risk. Transboundary and Emerging Diseases, 2021, 68, 2503-2513.	3.0	10
4	Coâ€infection best predicts respiratory viral infection in a wild host. Journal of Animal Ecology, 2021, 90, 602-614.	2.8	4
5	Coinfection and infection duration shape how pathogens affect the African buffalo gut microbiota. ISME Journal, 2021, 15, 1359-1371.	9.8	17
6	Associations between testosterone and immune activity in alligators depend on bacteria species and temperature. Functional Ecology, 2021, 35, 1018-1027.	3.6	6
7	Parasitism and host social behaviour: a meta-analysis of insights derived from social network analysis. Animal Behaviour, 2021, 172, 171-182.	1.9	19
8	Alternative transmission pathways for guinea worm in dogs: implications for outbreak risk and control. International Journal for Parasitology, 2021, 51, 1027-1034.	3.1	2
9	Response to Charlier et al.: Climate–Disease Feedbacks Mediated by Livestock Methane Emissions Are Plausible. Trends in Ecology and Evolution, 2021, 36, 578-579.	8.7	2
10	Natural resistance to worms exacerbates bovine tuberculosis severity independently of worm coinfection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
11	Characterising interactions between co-infecting parasites using age-intensity profiles. International Journal for Parasitology, 2020, 50, 23-26.	3.1	3
12	Infectious Diseases, Livestock, and Climate: A Vicious Cycle?. Trends in Ecology and Evolution, 2020, 35, 959-962.	8.7	10
13	Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Frontiers in Immunology, 2020, 11, 1695.	4.8	24
14	Identifying correlates of Guinea worm (Dracunculus medinensis) infection in domestic dog populations. PLoS Neglected Tropical Diseases, 2020, 14, e0008620.	3.0	11
15	Exposure to Ebola Virus and Risk for Infection with Malaria Parasites, Rural Gabon. Emerging Infectious Diseases, 2020, 26, 229-237.	4.3	7
16	Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats. MBio, 2020, 11, .	4.1	204
17	Rainfall as a driver of seasonality in parasitism. International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 8-12.	1.5	22

18 Title is missing!. , 2020, 14, e0008620.

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 14, e0008620.		Ο
20	Title is missing!. , 2020, 14, e0008620.		0
21	Title is missing!. , 2020, 14, e0008620.		О
22	Title is missing!. , 2020, 14, e0008620.		0
23	Title is missing!. , 2020, 14, e0008620.		Ο
24	Title is missing!. , 2020, 14, e0008620.		0
25	Title is missing!. , 2020, 14, e0008620.		Ο
26	Risk alleles for tuberculosis infection associate with reduced immune reactivity in a wild mammalian host. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190914.	2.6	4
27	Bovine tuberculosis disturbs parasite functional trait composition in African buffalo. Proceedings of the United States of America, 2019, 116, 14645-14650.	7.1	8
28	Immune stability predicts tuberculosis infection risk in a wild mammal. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191401.	2.6	3
29	Why did the buffalo cross the park? Resource shortages, but not infections, drive dispersal in female African buffalo (Syncerus caffer). Ecology and Evolution, 2019, 9, 5651-5663.	1.9	10
30	Refugia and anthelmintic resistance: Concepts and challenges. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 51-57.	3.4	65
31	Regeneration-Competent and -Incompetent Murids Differ in Neutrophil Quantity and Function. Integrative and Comparative Biology, 2019, 59, 1138-1149.	2.0	11
32	Parasite sharing in wild ungulates and their predators: Effects of phylogeny, range overlap, and trophic links. Journal of Animal Ecology, 2019, 88, 1017-1028.	2.8	18
33	Immune tradeâ€offs shape disease outcomes at individual and population scales. FASEB Journal, 2019, 33, 204.3.	0.5	0
34	Differential host responses to parasitism shape divergent fitness costs of infection. Functional Ecology, 2018, 32, 324-333.	3.6	36
35	Contextâ€dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host. Ecology and Evolution, 2018, 8, 12712-12726.	1.9	10
36	Gauging support for macroecological patterns in helminth parasites. Global Ecology and Biogeography, 2018, 27, 1437-1447.	5.8	33

#	Article	IF	CITATIONS
37	Social living simultaneously increases infection risk and decreases the cost of infection. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	2.6	18
38	Disentangling complex parasite interactions: Protection against cerebral malaria by one helminth species is jeopardized by co-infection with another. PLoS Neglected Tropical Diseases, 2018, 12, e0006483.	3.0	26
39	Opposite outcomes of coinfection at individual and population scales. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7545-7550.	7.1	31
40	Global Mammal Parasite Database version 2.0. Ecology, 2017, 98, 1476-1476.	3.2	98
41	A comparison of two methods for quantifying parasitic nematode fecundity. Parasitology Research, 2017, 116, 1597-1602.	1.6	4
42	Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160129.	4.0	58
43	Pathogen Exposure in Cattle at the Livestock-Wildlife Interface. EcoHealth, 2017, 14, 542-551.	2.0	12
44	Drivers and consequences of variation in individual social connectivity. Animal Behaviour, 2017, 133, 1-9.	1.9	18
45	Host immunity, nutrition and coinfection alter longitudinal infection patterns of schistosomes in a free ranging African buffalo population. PLoS Neglected Tropical Diseases, 2017, 11, e0006122.	3.0	23
46	Limited sharing of tick-borne hemoparasites between sympatric wild and domestic ungulates. Veterinary Parasitology, 2016, 226, 167-173.	1.8	9
47	Experimental insight into the process of parasite community assembly. Journal of Animal Ecology, 2016, 85, 1222-1233.	2.8	20
48	Within guild coâ€infections influence parasite community membership: a longitudinal study in African Buffalo. Journal of Animal Ecology, 2016, 85, 1025-1034.	2.8	23
49	Reciprocal relationships between behaviour and parasites suggest that negative feedback may drive flexibility in male reproductive behaviour. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160423.	2.6	14
50	Heterogeneity in pathogen transmission: mechanisms and methodology. Functional Ecology, 2016, 30, 1606-1622.	3.6	177
51	Host behaviour–parasite feedback: an essential link between animal behaviour and disease ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153078.	2.6	112
52	Group living and pathogen infection revisited. Current Opinion in Behavioral Sciences, 2016, 12, 66-72.	3.9	77
53	Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies. Physiological and Biochemical Zoology, 2016, 89, 389-401.	1.5	15
54	Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals. Nature Communications, 2016, 7, 11164.	12.8	124

VANESSA O EZENWA

#	Article	IF	CITATIONS
55	The macroecology of infectious diseases: a new perspective on globalâ€scale drivers of pathogen distributions and impacts. Ecology Letters, 2016, 19, 1159-1171.	6.4	126
56	Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly. Integrative and Comparative Biology, 2016, 56, 278-289.	2.0	16
57	Large wildlife removal drives immune defence increases in rodents. Functional Ecology, 2016, 30, 799-807.	3.6	13
58	Contextâ€dependent survival, fecundity and predicted populationâ€level consequences of brucellosis in <scp>A</scp> frican buffalo. Journal of Animal Ecology, 2015, 84, 999-1009.	2.8	29
59	Interdisciplinarity and Infectious Diseases: An Ebola Case Study. PLoS Pathogens, 2015, 11, e1004992.	4.7	25
60	A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts. Molecular Ecology Resources, 2015, 15, 1112-1119.	4.8	34
61	Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science, 2015, 347, 175-177.	12.6	138
62	Resource limitation alters the consequences of co-infection for both hosts and parasites. International Journal for Parasitology, 2015, 45, 455-463.	3.1	57
63	Ungulates as model systems for the study of disease processes in natural populations. Journal of Mammalogy, 2015, 96, 4-15.	1.3	30
64	EVALUATION OF THE SENSITIVITY AND SPECIFICITY OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DIAGNOSING BRUCELLOSIS IN AFRICAN BUFFALO (SYNCERUS CAFFER). Journal of Wildlife Diseases, 2015, 51, 9.	0.8	17
65	Development and characterization of 30 novel microsatellite markers for Grant's gazelle (Nanger) Tj ETQq1 1	0,78431	4 rgBT /Overl
66	Anthelmintic treatment affects behavioural time allocation in a free-ranging ungulate. Animal Behaviour, 2015, 108, 47-54.	1.9	11
67	COMPARISON OF MODIFIED FLOTAC AND BAERMANN TECHNIQUES FOR QUANTIFYING LUNGWORM LARVAE IN FREE-RANGING BIGHORN SHEEP (OVIS CANADENSIS) FECES, MONTANA, USA. Journal of Wildlife Diseases, 2015, 51, 843-848.	0.8	2
68	Identification of novel Theileria genotypes from Grant's gazelle. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 239-243.	1.5	8
69	Infection with Mycoplasma gallisepticum Buffers the Effects of Acute Stress on Innate Immunity in House Finches. Physiological and Biochemical Zoology, 2014, 87, 257-264.	1.5	6
70	Interactions between Micro- and Macroparasites Predict Microparasite Species Richness across Primates. American Naturalist, 2014, 183, 494-505.	2.1	12
71	Microbes and animal olfactory communication: Where do we go from here?. BioEssays, 2014, 36, 847-854.	2.5	98
72	Nematode–coccidia parasite co-infections in African buffalo: Epidemiology and associations with host condition and pregnancy. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 124-134.	1.5	33

#	Article	IF	CITATIONS
73	Tick infestation patterns in free ranging African buffalo (Syncercus caffer): Effects of host innate immunity and niche segregation among tick species. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 1-9.	1.5	32
74	Ecology of Potential West Nile Virus Vectors in Southeastern Louisiana: Enzootic Transmission in the Relative Absence of Culex quinquefasciatus. American Journal of Tropical Medicine and Hygiene, 2013, 88, 986-996.	1.4	18
75	Innate Immunity in Free-Ranging African Buffalo (<i>Syncerus caffer</i>): Associations with Parasite Infection and White Blood Cell Counts. Physiological and Biochemical Zoology, 2012, 85, 255-264.	1.5	40
76	PREVALENCE OF ANTIBODIES TO CANINE PARVOVIRUS AND DISTEMPER VIRUS IN WOLVES IN THE CANADIAN ROCKY MOUNTAINS. Journal of Wildlife Diseases, 2012, 48, 68-76.	0.8	14
77	Animal Behavior and the Microbiome. Science, 2012, 338, 198-199.	12.6	400
78	Direct and indirect costs of co-infection in the wild: Linking gastrointestinal parasite communities, host hematology, and immune function. International Journal for Parasitology: Parasites and Wildlife, 2012, 1, 2-12.	1.5	37
79	Unravelling complex associations between testosterone and parasite infection in the wild. Functional Ecology, 2012, 26, 123-133.	3.6	91
80	Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. International Journal for Parasitology, 2011, 41, 89-98.	3.1	74
81	From Host Immunity to Pathogen Invasion: The Effects of Helminth Coinfection on the Dynamics of Microparasites. Integrative and Comparative Biology, 2011, 51, 540-551.	2.0	124
82	Does Animal Behavior Underlie Covariation Between Hosts' Exposure to Infectious Agents and Susceptibility to Infection? Implications for Disease Dynamics. Integrative and Comparative Biology, 2011, 51, 528-539.	2.0	107
83	Muellerius capillaris Dominates the Lungworm Community of Bighorn Sheep at the National Bison Range, Montana. Journal of Wildlife Diseases, 2010, 46, 988-993.	0.8	9
84	Hidden Consequences of Living in a Wormy World: Nematodeâ€Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo. American Naturalist, 2010, 176, 613-624.	2.1	205
85	A reliable body condition scoring technique for estimating condition in African buffalo. African Journal of Ecology, 2009, 47, 476-481.	0.9	57
86	Infecting epidemiology with genetics: a new frontier in disease ecology. Trends in Ecology and Evolution, 2009, 24, 21-30.	8.7	172
87	Biodiversity Loss Affects Global Disease Ecology. BioScience, 2009, 59, 945-954.	4.9	211
88	Horns honestly advertise parasite infection in male and female African buffalo. Animal Behaviour, 2008, 75, 2013-2021.	1.9	46
89	Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biology Letters, 2008, 4, 228-231.	2.3	76
90	INTERACTIONS BETWEEN MACROPARASITES AND MICROPARASITES DRIVE INFECTION PATTERNS IN FREE-RANGING AFRICAN BUFFALO. Ecology, 2008, 89, 2239-2250.	3.2	194

VANESSA O EZENWA

#	Article	IF	CITATIONS
91	Land Cover Variation and West Nile Virus Prevalence: Patterns, Processes, and Implications for Disease Control. Vector-Borne and Zoonotic Diseases, 2007, 7, 173-180.	1.5	77
92	Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos, 2006, 115, 526-536.	2.7	103
93	Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 109-117.	2.6	272
94	Selective Defecation and Selective Foraging: Antiparasite Behavior in Wild Ungulates?. Ethology, 2004, 110, 851-862.	1.1	77
95	Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. International Journal for Parasitology, 2004, 34, 535-542.	3.1	93
96	Parasite infection rates of impala (Aepyceros melampus) in fenced game reserves in relation to reserve characteristics. Biological Conservation, 2004, 118, 397-401.	4.1	19
97	The effects of time of day on the prevalence of coccidian oocysts in antelope faecal samples. African Journal of Ecology, 2003, 41, 192-193.	0.9	8
98	Social Organization and Parasite Risk in Mammals: Integrating Theory and Empirical Studies. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 517-547.	8.3	625
99	Ancient Conservation of Trinucleotide Microsatellite Loci in Polistine Wasps. Molecular Phylogenetics and Evolution, 1998, 10, 168-177.	2.7	66
100	Noninvasive measures of stress response in African buffalo (Syncerus caffer) reveal an age-dependent stress response to immobilization. Journal of Mammalogy, 0, , .	1.3	2