Lata Govada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6260665/publications.pdf Version: 2024-02-01

Ι ΑΤΑ ΓΟΥΑΡΑ

#	Article	IF	CITATIONS
1	Grapheneâ \in Based Nucleants for Protein Crystallization. Advanced Functional Materials, 2022, 32, .	14.9	4
2	Analysis of insulin glulisine at the molecular level by X-ray crystallography and biophysical techniques. Scientific Reports, 2021, 11, 1737.	3.3	7
3	Theoretical and experimental investigation of protein crystal nucleation in pores and crevices. IUCrJ, 2021, 8, 270-280.	2.2	5
4	X-ray crystallographic studies of RoAb13 bound to PIYDIN, a part of the N-terminal domain of C-C chemokine receptor 5. IUCrJ, 2021, 8, 678-683.	2.2	2
5	Analysis of Glulisine Crystallisation Utilising Phase Diagrams and Nucleants. Crystals, 2019, 9, 462.	2.2	2
6	Choosing the Method of Crystallization to Obtain Optimal Results. Crystals, 2019, 9, 106.	2.2	7
7	Droplet Microfluidics XRD Identifies Effective Nucleating Agents for Calcium Carbonate. Advanced Functional Materials, 2019, 29, 1808172.	14.9	31
8	Hydrophobic Interface-Assisted Protein Crystallization: Theory and Experiment. ACS Applied Materials & Interfaces, 2019, 11, 12931-12940.	8.0	19
9	Chlamydia protein Pgp3 studied at high resolution in a new crystal form. IUCrJ, 2018, 5, 439-448.	2.2	3
10	Smart materials for increasing the success of protein crystallization. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1138-C1138.	0.1	0
11	Enhancing the success of crystallization: strategies and techniques. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1082-C1082.	0.1	0
12	Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals. Scientific Reports, 2016, 6, 20053.	3.3	23
13	Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality. Chemical Science, 2016, 7, 2916-2923.	7.4	40
14	Automating the application of smart materials for protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 534-540.	2.5	15
15	A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody. PLoS ONE, 2015, 10, e0128381.	2.5	14
16	A unique octameric structure of Axe2, an intracellular acetyl-xylooligosaccharide esterase from <i>Geobacillus stearothermophilus</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 261-278.	2.5	30
17	Porous nucleating agents for protein crystallization. Nature Protocols, 2014, 9, 1621-1633.	12.0	93
18	Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase fromGeobacillus stearothermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1114-1119.	0.7	21

Lata Govada

#	Article	IF	CITATIONS
19	Micro ATR FTIR imaging of hanging drop protein crystallisation. Vibrational Spectroscopy, 2012, 63, 492-498.	2.2	20
20	Optimization of Protein Crystallization: The OptiCryst Project. Crystal Growth and Design, 2011, 11, 2112-2121.	3.0	13
21	Electronic carbon-nanotube-based materials for protein crystallization. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s294-s294.	0.3	0
22	Structure/processing relationships in the fabrication of nanoporous gold. Jom, 2010, 62, 50-56.	1.9	103
23	Attenuated total reflection-FT-IR spectroscopic imaging of protein crystallization. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s294-s295.	0.3	0
24	Carbon-Nanotube-Based Materials for Protein Crystallization. ACS Applied Materials & 2009, 1, 1203-1210.	8.0	59
25	Crystallization by Controlled Evaporation Leading to High Resolution Crystals of the C1 Domain of Cardiac Myosin Binding Protein-C (cMyBP-C). Crystal Growth and Design, 2009, 9, 1729-1732.	3.0	4
26	Crystallization of Proteins: Principles and Methods. , 2009, , 113-127.		0
27	Attenuated Total Reflection-FT-IR Spectroscopic Imaging of Protein Crystallization. Analytical Chemistry, 2009, 81, 3769-3775.	6.5	34
28	Crystal Structure of the C1 domain of Cardiac Myosin Binding Protein-C: Implications for Hypertrophic Cardiomyopathy. Journal of Molecular Biology, 2008, 378, 387-397.	4.2	36
29	Dynamic Screening Experiments to Maximize Hits for Crystallization. Crystal Growth and Design, 2007,	3.0	14