
Delphine Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6260004/publications.pdf Version: 2024-02-01

DEIDHINE MEDINO

#	Article	IF	CITATIONS
1	Longitudinal Monitoring of Intra-Tumoural Heterogeneity Using Optical Barcoding of Patient-Derived Colorectal Tumour Models. Cancers, 2022, 14, 581.	3.7	4
2	Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin. Cancers, 2022, 14, 2404.	3.7	2
3	The site of breast cancer metastases dictates their clonal composition and reversible transcriptomic profile. Science Advances, 2021, 7, .	10.3	23
4	Spatial omics and multiplexed imaging to explore cancer biology. Nature Methods, 2021, 18, 997-1012.	19.0	279
5	Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death and Differentiation, 2020, 27, 2768-2780.	11.2	31
6	Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Research, 2019, 21, 94.	5.0	87
7	Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nature Communications, 2019, 10, 766.	12.8	99
8	Breast tumour organoids: promising models for the genomic and functional characterisation of breast cancer. Biochemical Society Transactions, 2019, 47, 109-117.	3.4	29
9	Abstract PD9-05: The importance of the metastatic biopsy: Clinical and translational relevance in a real world series of patients with metastatic breast cancer. , 2019, , .		Ο
10	MA27.09 Dual Inhibition of BCL-XL and MCL-1 is Required to Induce Tumour Regression in Lung Squamous Cell Carcinomas Sensitive to FGFR Inhibition. Journal of Thoracic Oncology, 2018, 13, S457.	1.1	0
11	BH3-Mimetic Drugs: Blazing the Trail for New Cancer Medicines. Cancer Cell, 2018, 34, 879-891.	16.8	250
12	Dual inhibition of BCL-XL and MCL-1 is required to induce tumour regression in lung squamous cell carcinomas sensitive to FGFR inhibition. Oncogene, 2018, 37, 4475-4488.	5.9	75
13	Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 2017, 9, .	12.4	148
14	Elementary: breast cancer culprits leave their signatures on the double helix. Cell Death and Differentiation, 2016, 23, 1577-1578.	11.2	0
15	Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene, 2016, 35, 1877-1887.	5.9	116
16	Abstract IA19: Targeting the BCL-2 family in breast cancer. , 2016, , .		0
17	PG 7.02 BCL-2: a new therapeutic target in estrogen receptor-positive breast cancer?. Breast, 2015, 24, S12.	2.2	0
18	Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2. Oncogene, 2015, 34, 3926-3934.	5.9	27

Delphine Merino

#	Article	IF	CITATIONS
19	Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice. Cell Death and Disease, 2014, 5, e1446-e1446.	6.3	25
20	Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199. Leukemia, 2014, 28, 1207-1215.	7.2	79
21	Targeting BCL-2 with the BH3 Mimetic ABT-199 in Estrogen Receptor-Positive Breast Cancer. Cancer Cell, 2013, 24, 120-129.	16.8	243
22	Abstract P2-09-01: Targeting BCL-2 with the BH3 mimetic ABT-199 in ER-positive breast cancer. , 2013, , .		0
23	Alternative splicing of Bim and Erk-mediated BimEL phosphorylation are dispensable for hematopoietic homeostasis in vivo. Cell Death and Differentiation, 2012, 19, 1060-1068.	11.2	32
24	Bim must be able to engage all pro-survival Bcl-2 family members for efficient tumor suppression. Oncogene, 2012, 31, 3392-3396.	5.9	20
25	Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood, 2012, 119, 5807-5816.	1.4	168
26	Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. Journal of Experimental Medicine, 2011, 208, 1351-1358.	8.5	29
27	TRAIL-R4 Promotes Tumor Growth and Resistance to Apoptosis in Cervical Carcinoma HeLa Cells through AKT. PLoS ONE, 2011, 6, e19679.	2.5	57
28	Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level. Cell Death and Differentiation, 2011, 18, 700-711.	11.2	75
29	Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. Journal of Cell Biology, 2011, 193, i14-i14.	5.2	0
30	The Bcl-2 family in autoimmune and degenerative disorders. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 570-583.	4.9	28
31	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Cell Biology, 2009, 186, 355-362.	5.2	164
32	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Experimental Medicine, 2009, 206, i19-i19.	8.5	0
33	MicroRNAs and lymphocyte homeostasis: Dangerous eggs in a single basket. Immunology and Cell Biology, 2008, 86, 387-388.	2.3	1
34	A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene, 2008, 27, 6012-6022.	5.9	78
35	TRAIL Induces Receptor-Interacting Protein 1–Dependent and Caspase-Dependent Necrosis-Like Cell Death under Acidic Extracellular Conditions. Cancer Research, 2007, 67, 218-226.	0.9	62
36	TRAIL in cancer therapy: present and future challenges. Expert Opinion on Therapeutic Targets, 2007, 11, 1299-1314.	3.4	148

Delphine Merino

#	Article	IF	CITATIONS
37	Deglycosylated bleomycin induces apoptosis in lymphoma cell via c-jun NH2-terminal kinase but not reactive oxygen species. Biochemical Pharmacology, 2007, 74, 1445-1455.	4.4	9
38	The inhibition of TNF-α anti-tumoral properties by blocking antibodies promotes tumor growth in a rat model. Experimental Cell Research, 2007, 313, 2345-2355.	2.6	35
39	Apoptotic, necrotic, or fused tumor cells: An equivalent source of antigen for dendritic cell loading. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1513-1524.	4.9	36
40	Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic Differentiation through Nuclear Factor-κB-Related Survival Pathway Down-Regulation. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 304-314.	2.5	68
41	Differential Inhibition of TRAIL-Mediated DR5-DISC Formation by Decoy Receptors 1 and 2. Molecular and Cellular Biology, 2006, 26, 7046-7055.	2.3	288
42	Controlling TRAIL-mediated caspase-3 activation. Leukemia, 2004, 18, 1578-1580.	7.2	10
43	Apoptosis and Cell Survival in the Immune System. , 0, , 333-349.		О